

November 12, 2013

Mr. Ed Tam Belleau Wood Development, LLC 415 Pisgah Church Road, #363 Greensboro, North Carolina 27455

Subject: Limited Soil and Groundwater Assessment Report

Intersection of North Graham Hopedale Road and North Church Street

Burlington, Alamance County, North Carolina

Progress Project No.: 1013130.002

Dear Mr. Tam:

Progress Environmental, Inc. (Progress) is pleased to submit this Limited Soil and Groundwater Assessment Report for the property located in the northeast quadrant of North Graham Hopedale Road and North Church Street in Burlington, Alamance County, North Carolina (Figure 1). The purpose of the environmental services is to determine whether the site has been impacted by the historic uses of the site or by potential off-site sources.

INTRODUCTION

The site is approximately 9.64 acres and consists of a paved parking lot and inactive railroad spur that transects the site extending northwest to southeast. The Alamance County Geographic Information System identifies the parcel as 147805. Progress previously completed a review of the available North Carolina Department of Environment and Natural Resources (NCDENR) files on the CARA Portal and is preparing a Phase I Environmental Site Assessment (Phase I ESA) for the site.

FIELD ACTIVITIES

Geophysical Survey

A geophysical survey was completed on September 27, 2013 by Geo Solutions, Ltd. to determine if "orphaned" USTs, anomalies, or if evidence of buried debris was present beneath the site. The geophysical survey identified two unknown anomalies on the northeastern portion of the site. Additional structural anomalies were not identified.

Soil and Groundwater Sampling and Temporary Monitoring Well Installation Activities

On October 2, 2013, Progress installed three temporary one-inch monitoring wells (TW-1 through TW-3, Figure 2) and advanced eight soil borings (S-1 through S-5 and TW-1 through TW-3, Figure 2). On October 30, 2013 Progress installed six additional temporary monitoring wells (TW-4 through TW-9, Figure 2) and collected one soil sample (TW8-5, Figure 2) at the site to determine whether soil and/or groundwater beneath the site has been adversely affected by the historical uses or by potential

Report of Limited Soil and Groundwater Assessment Burlington, North Carolina Progress Project No. 1013130.002 November 12, 2013

off-site sources that were identified during the October 2 and 3, 2013 soil and groundwater assessment and during the historical research for the Phase I ESA. The borings were advanced using a trackmounted Geoprobe®, which utilized the direct push drilling method.

Prior to initiating the first boring and between each subsequent boring, the Geoprobe® drill rig and associated downhole equipment were decontaminated with the use of a high-pressure steam cleaner. Soil samples were collected continuously in each boring from the ground surface to the boring termination, at approximate five-foot intervals. Each soil sample was collected by driving a five-foot long, 2.25-inch sampling probe into the soil. The probe is lined with a disposable clear plastic tube, which was replaced for each five-foot interval. After the probe is driven, the clear plastic tube filled with soil is removed from the probe. The clear plastic tube is then cut open to remove the soil for visual analysis and/or collection of a soil sample for laboratory analysis.

A representative portion of the soil samples collected from each of the Geoprobe® soil sample tubes was transferred into a new, clean resealable bag (half full). The bag was placed in a warm location. Approximately ten minutes after the time of collection, the bag was opened slightly and the probe of a RAE MiniRae Lite photoionization detector (PID) was inserted into the headspace of the bag. The meter of the PID was monitored and the reading recorded. The recorded PID responses are presented on the boring logs included in the Appendix.

Soil samples were collected and screened from the soil borings and temporary monitoring well borings at five foot intervals from the ground surface to a depths ranging from approximately 5 feet below land surface (bls) to approximately 15 feet bls.

One soil sample from each soil boring and select temporary monitoring well borings was submitted to a North Carolina certified laboratory for analysis. The soil sample selected for laboratory analysis from each boring was selected based on the depth to groundwater as estimated during the drilling activities. Based on historical groundwater data and the estimated depth to groundwater observed during the drilling activities, each soil sample selected for laboratory analysis was collected from a depth of one to five feet bls. The selected soil sample from each boring was placed into laboratory prepared containers and then into a cooler packed with ice and delivered under chain-of-custody to Research and Analytical Laboratories, Inc. (R&A) in Kernersville, North Carolina. Each soil sample S1-5, S2-5, S3-5, S4-5, S5-5, TW1-5, TW2-5, and TW3-5 was analyzed for volatile organic compounds (VOCs) using EPA Method 8260, for semi-volatile organic compounds (SVOCs) using EPA Method 8270BNA (base neutrals and acid extractables, for polychlorinated biphenyls (PCBs) using EPA Method 8082, and for Priority Pollutant Metals. Soil sample TW8-5 was analyzed for gasoline and diesel range total petroleum hydrocarbons (TPH) using EPA Method 8015/5035 and 8015/3550, respectively.

The temporary monitoring wells were advanced to a depth of approximately 20 to 25 feet bls to facilitate the collection of groundwater samples. Saturated soils were encountered in the soil borings at depths ranging from approximately six to 15 feet bls. Boring logs and temporary monitoring well construction diagrams, which include a description of the soil encountered and PID screening results, are included in the Appendix.

On October 3 and 31, 2013 static water levels were measured in the temporary monitoring wells TW-1 through TW-3 and existing monitoring well MWC-1 using a water level meter that was decontaminated between each well and groundwater samples were collected. Static water levels were measured in temporary monitoring wells TW-4 through TW-9 and groundwater samples were collected on October 31, 2013. Groundwater samples were collected from the temporary monitoring wells and the existing monitoring well using a disposable bailer and new length of

Report of Limited Soil and Groundwater Assessment Burlington, North Carolina Progress Project No. 1013130.002 November 12, 2013

nylon string dedicated to each well. Prior to sampling, the temporary monitoring wells were purged of approximately three well volumes.

The groundwater samples were placed into laboratory prepared containers and then into a cooler packed with ice and delivered under chain-of-custody to R&A. The groundwater samples collected from temporary monitoring wells TW-1 through TW-3 and existing monitoring well MWC-1 were analyzed for VOCs using Standard Method 6200B plus isopropyl ether (IPE) and metyl tertiary butyl ether (MTBE), for SVOCs using EPA Method 625 BNA, for PCBs using EPA Method 8082, and for Priority Pollutant Metals. The groundwater samples collected from temporary monitoring wells TW-4 through TW-9 were analyzed for VOCs using Standard Method 6200B plus IPE and MTBE.

Following the collection of the soil samples, the soil borings were backfilled with bentonite chips and the investigation generated soil cuttings. The ground surface of the soil borings was repaired with asphalt patch, as necessary. The temporary monitoring wells will be properly abandoned, but have not been as of the date of this report.

Determination of Groundwater Flow Direction

The depth to the groundwater surface in temporary monitoring wells TW-1 through TW-9, and existing monitoring well MWC-1 was measured prior to well purging using a decontaminated electronic sounder. The wells were surveyed by Progress using a relative benchmark (top of casing for monitoring well MWC-1) that was arbitrarily given an elevation of 100 feet. The elevations of the monitoring wells and the groundwater surface are both relative to that benchmark. The relative groundwater elevations are shown in Table 3 and depicted on Figure 3. Based on information collected during the assessment activities, the groundwater flow direction beneath the site appears to be generally to the north-northwest beneath the site.

LABORATORY ANALYTICAL RESULTS

A summary of the soil analysis is summarized below and in Table 1:

- Laboratory analysis of soil samples S1-5, S2-5, S3-5, S4-5, S5-5, TW1-5, TW2-5, and TW3-5 detected targeted Priority Pollutant Metals above the laboratory quantitation limits, but below the NCDENR, Inactive Hazardous Sites Branch (IHSB) Soil Remediation Goals (SRGs) dated July 2013.
- Laboratory analysis of soil sample S2-5 detected fluoranthene at a concentration of 0.044J parts per million (ppm), which is below its SRG. Based on the detected concentrations of Priority Pollutant Metals and the lack of additional targeted VOCs, SVOCS, or PCBs being detected at concentrations exceeding the laboratory detection limit and/or their respective SRGs, the metals concentrations may represent naturally occurring concentrations.
- Laboratory analysis of soil sample TW8-5 detected gasoline and diesel range TPH above the North Carolina Action Levels.
- Please note, background soil samples were not collected as part of this assessment. The laboratory data sheets and chain-of-custody record are attached.

A summary of the groundwater analysis is summarized below and in Table 2:

- Laboratory analysis of the groundwater samples collected from temporary monitoring wells TW-1 through TW-3 and monitoring well MWC-1 detected total chromium above its North Carolina 2L Groundwater Quality Standards (NC2LGWQS).
- Laboratory analysis of the groundwater sample collected from existing monitoring well MWC-1 also detected total cadmium and total lead above their respective NC2LGWQS.
- Laboratory analysis of the groundwater sample collected from temporary monitoring well TW-1 also detected benzene, 1,2-dichloroethane, naphthalene, and 1-methylnaphthalene above their respective NC2LGWQS.
- Laboratory analysis of the groundwater samples collected from temporary monitoring wells TW-4 through TW-7 did not detect targeted compounds above their respective NC2LGWQS.
- Laboratory analysis of the groundwater samples collected from temporary monitoring wells TW-8 and TW-9 detected benzene above its NC2LGWQS.
- Laboratory analysis of the groundwater sample collected from temporary monitoring well TW-8 also detected i-propylbenzene and naphthalene above their respective NC2LGWQS.
- Please note, background groundwater samples were not collected as part of this assessment.
- The elevated concentrations of the detected Priority Pollutant Metals may be attributable to the turbidity of the groundwater samples.

CONCLUSIONS

Based on the results of the laboratory testing, Progress makes the following conclusions:

- The limited soil and groundwater assessment did not identify evidence of targeted compounds above the SRGs in the soil samples collected.
- The concentrations of detected petroleum-related compounds in the groundwater samples collected from temporary monitoring wells TW-1, TW-8, and TW-9 exceed their respective NC2LGWQS.
- Based upon the calculated groundwater flow direction, the absence of identifiable on-site sources of petroleum, the proximity to the documented off-site release of petroleum products at 1845 North Church Street, and the potential for petroleum releases (historical or recent) to have occurred at 1846 North Church Street, the petroleum-related compounds detected in the groundwater samples collected from temporary monitoring wells TW-1, TW-8, and TW-9 are most likely attributable to the off-site release(s) of petroleum products. The low levels of gasoline and diesel range TPH detected in soil sample TW8-5 may be the result of fluctuations in the groundwater table or vapors emanating from the impacted groundwater due to the relatively shallow depth to groundwater.

RECOMMENDATIONS

Based on the results of the laboratory testing, Progress makes the following recommendations:

• If USTs, impacted soil, or hazardous materials are encountered during future redevelopment activities, they should be handled and disposed in accordance with current NCDENR rules and regulations. Progress recommends that the current property owner be notified and that a copy of this report be submitted to the NCDENR.

Report of Limited Soil and Groundwater Assessment Burlington, North Carolina Progress Project No. 1013130.002 November 12, 2013

• Furthermore, Progress also considers this site to be a potential candidate for the North Carolina Brownfields Program in an effort to limit the liability and exposure to a prospective developer not deemed responsible for the impacted media at the site. The Brownfields program requires that an eligibility application be submitted by the prospective developer, which should include associated documentation (i.e. Phase I ESA and assessment activities). The eligibility process can take approximately two to six weeks for the site to be approved for entry into the program. The Brownfields Program could require additional assessment of the soil and groundwater at the site. The site eligibility must be determined prior to a property transaction occurring.

CLOSING

This report is intended for the use of Belleau Wood Development, LLC, subject to the contractual terms agreed to for this project. Reliance on this document by any other party is forbidden without the express written consent of Progress, and that party's acceptance of mutually agreeable terms and conditions. Use of this report for purposes beyond those reasonably intended by Belleau Wood Development, LLC and Progress will be at the sole risk of the user.

We appreciate your selection of Progress for this project and look forward to assisting you further on this and other projects. If you have any questions, please do not hesitate to contact us at (336) 722-9999.

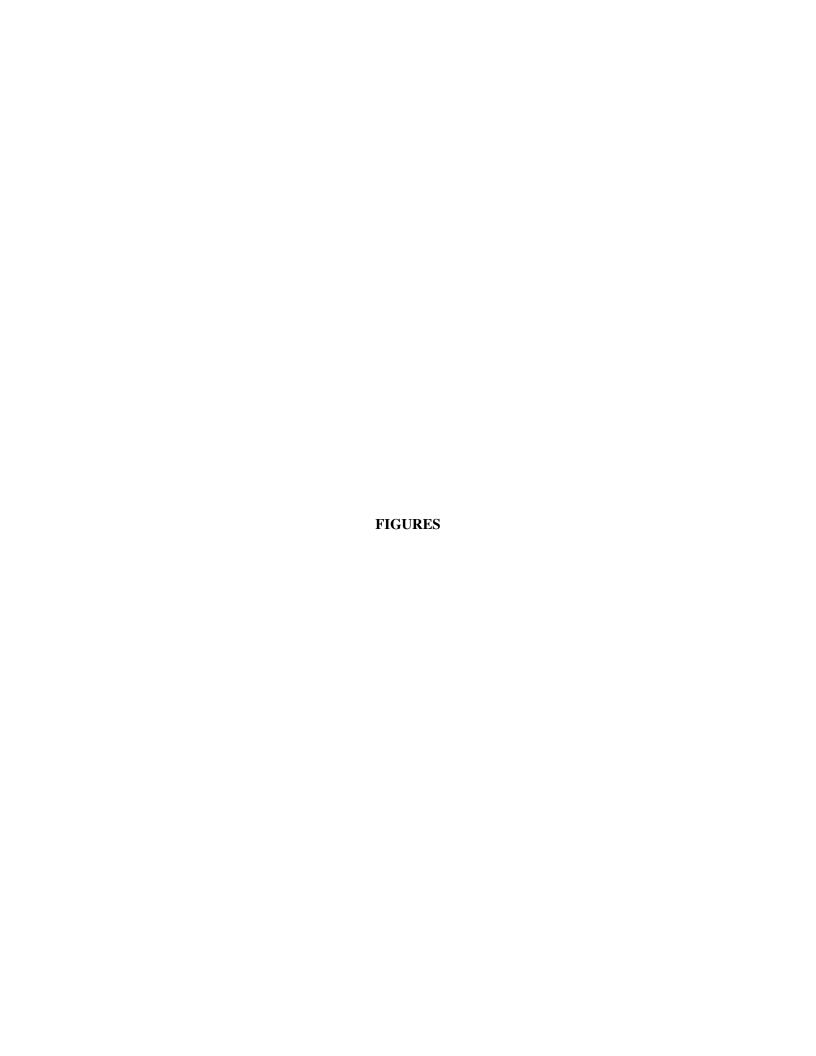
Sincerely,

PROGRESS ENVIRONMENTAL, INC.

Jason T. Ricks

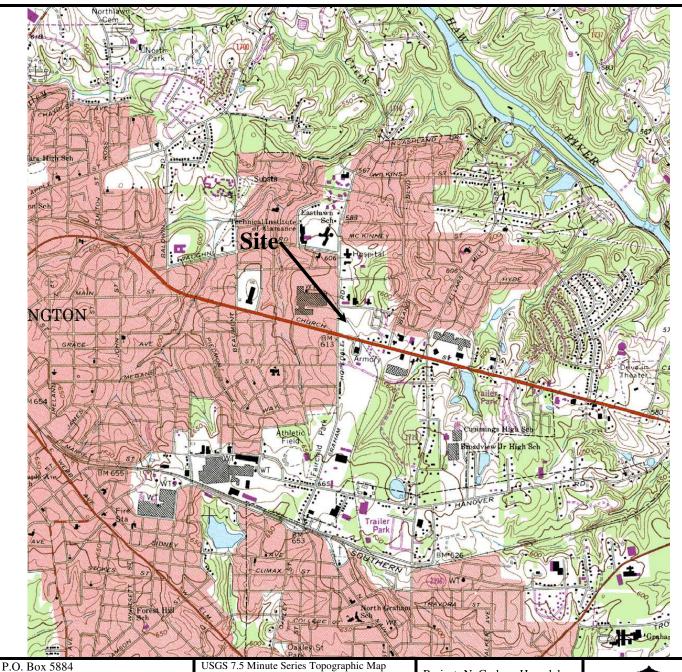
Senior Environmental Scientist

Jeffrey A. Ballsieper, L.G.


Director of Environmental Services

Jeffrey a Ballsigner

Attachments: Figures


Tables Boring Logs

Laboratory Analytical Reports

Figure 1 **Topographic Site Map**

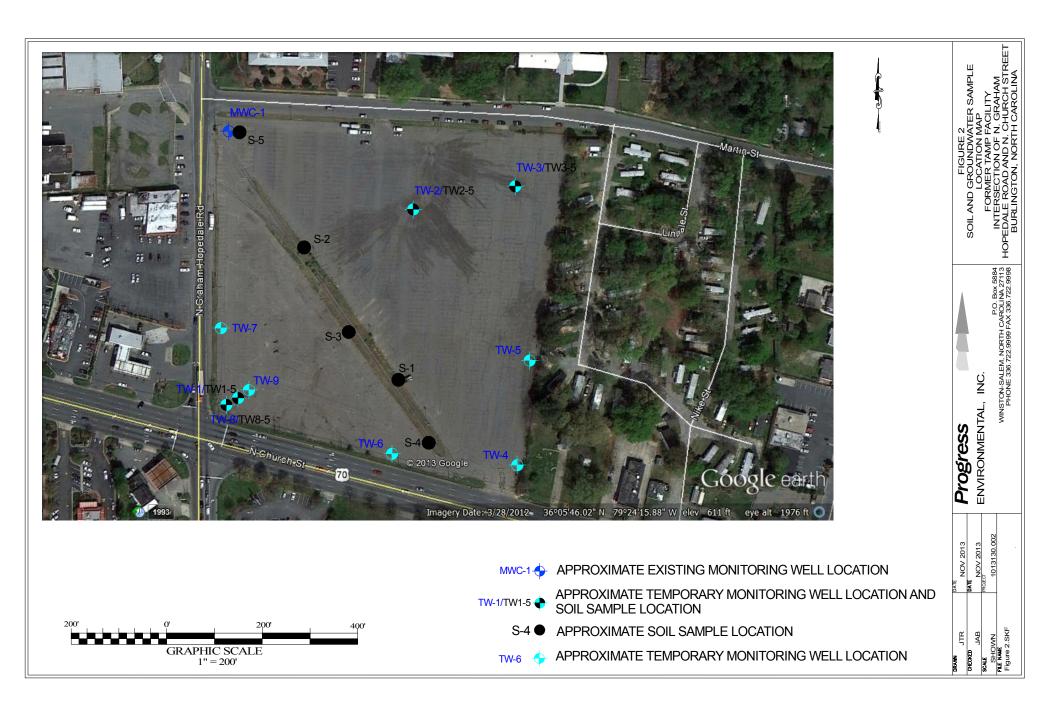
Intersection of North Graham Hopedale Road and North Church Street Burlington, Alamance County, North Carolina

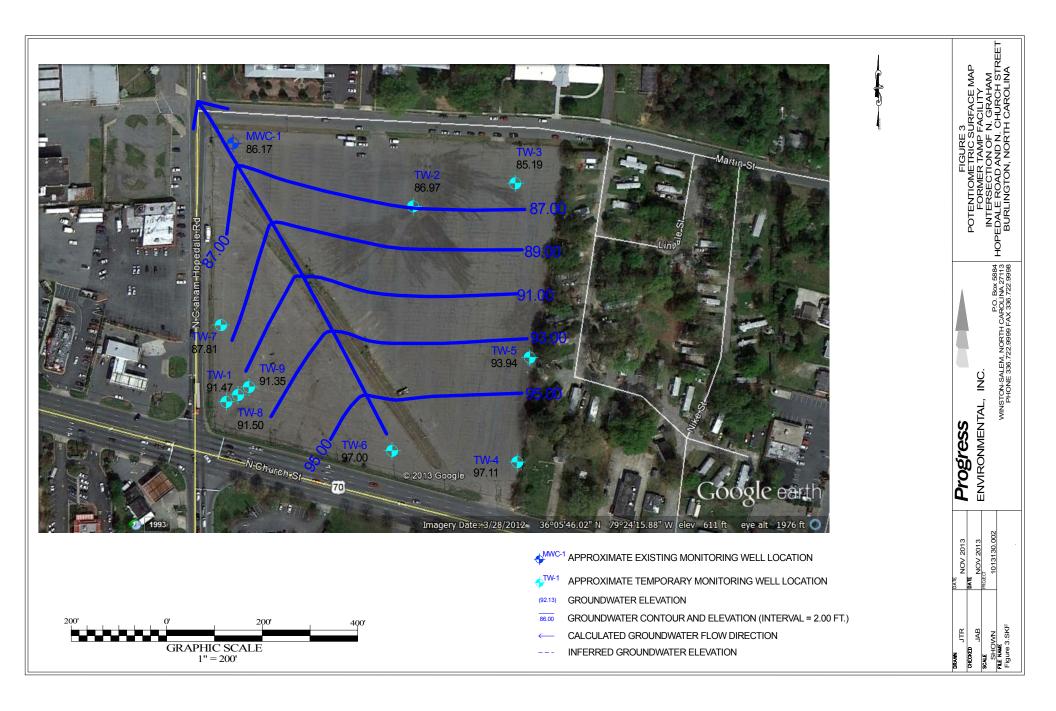
Winston-Salem, NC 27113 Telephone: (336) 722-9999 Fax: (336) 722-9998 www.progressenvironmental.com

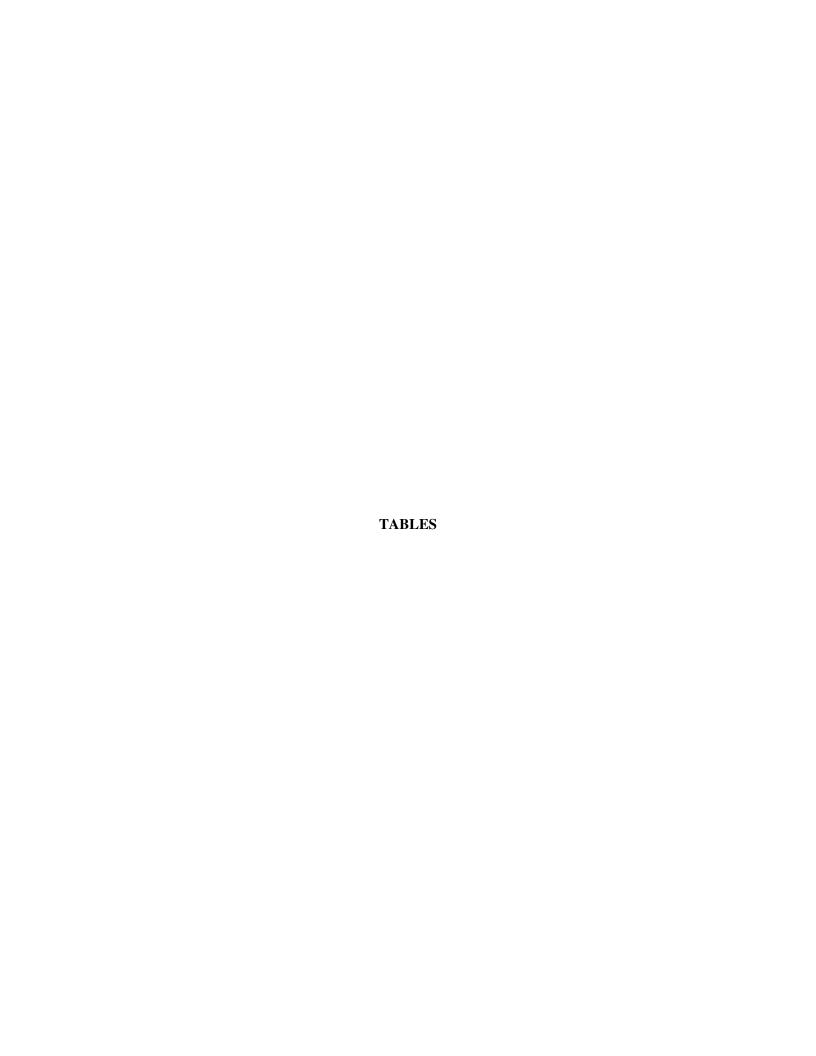
Contour Interval: 10 feet

Scale: 1" = 2000' Burlington, N.C.

Date: 1969, Photorevised 1981


Project: N. Graham Hopedale


Client: Belleau Wood Dev., LLC


Progress Job #: 1013130.002

Date: November 2013

Table 1 Summary of Soil Analytical Results Former TAMP Facility Report of Limited Soil and Groundwater Assessment

	Analytical Method	d	5035	3550	8082	8260	8270						Priority I	Pollutant N	Ietals					
Sample ID	Contamina Date Collected (m/dd/yy)	ant of Concern Approximate Sample Depth	GRO	DRO	PCBs	Targeted Compounds	Fluoranthene	Total Silver	Total Arsenic	Total Beryllium	Total Cadmium	Total Chromium	Total Copper	Total Mercury	Total Nickel	Total Lead	Total Antimony	Total Selenium	Total Thallium	Total Zinc
		(feet BLS)																		
S1-5	10/2/2013	1-5	NA	NA	BQL	BQL	BQL	BQL	BQL	0.178	BQL	14.3	21.3	0.057	3.17	6.86	BQL	BQL	BQL	10.0
S2-5	10/2/2013	1-5	NA	NA	BQL	BQL	0.044J	BQL	BQL	0.456	BQL	30.9	43.4	0.068	8.80	5.04	BQL	BQL	BQL	29.5
S3-5	10/2/2013	1-5	NA	NA	BQL	BQL	BQL	BQL	BQL	0.182	BQL	11.7	8.41	0.035	2.65	3.08	BQL	BQL	BQL	11.9
S4-5	10/2/2013	1-5	NA	NA	BQL	BQL	BQL	BQL	BQL	0.654	BQL	39.9	64.4	BQL	4.24	10.4	BQL	BQL	BQL	20.8
S5-5	10/2/2013	1-5	NA	NA	BQL	BQL	BQL	BQL	BQL	0.408	BQL	7.07	14.0	BQL	3.80	7.83	BQL	BQL	BQL	30.1
TW1-5	10/2/2013	1-5	NA	NA	BQL	BQL	BQL	BQL	BQL	0.169	BQL	8.36	8.43	BQL	2.31	2.70	BQL	BQL	BQL	11.2
TW2-5	10/2/2013	1-5	NA	NA	BQL	BQL	BQL	BQL	BQL	0.418	BQL	59.9	22.2	0.042	25.4	BQL	BQL	BQL	BQL	58.2
TW3-5	10/2/2013	1-5	NA	NA	BQL	BQL	BQL	BQL	BQL	0.690	BQL	95.4	48.2	BQL	45.0	BQL	BQL	BQL	BQL	153
TW8-5	10/30/2013	1-5	24.5	17.6	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
NC Action Level (mg	g/kg)		10	10	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
IHSB SRGs Residen	tail Health Based (mg	/kg)	N/A	N/A	N/A	N/A	460	78	0.61	32	14	24,000/0.29*	620	4.6	160	400	6.2	78	0.16	4,600
IHSB SRGs Industr	ial Health Based (mg/l	kg)	N/A	N/A	N/A	N/A	4,400	1,000	2.4	400	160	100,000/5.6*	8,200	62	2,000	800	82	1,000	2.0	62,000
IHSB SRGs Protecti	ion of Groundwater (n	ng/kg)	N/A	N/A	N/A	N/A	330	3.4	5.8	63	3.0	360,000/3.8*	700	1.0	130	270	0.90	2.1	0.28	1,200

NOTES:

= Concentration exceeds the IHSB SRG or the NC Action Level

BQL = Below Quantitation Limits

IHSB SRGs = Inactive Hazardous Sites Branch Soil Remediation Goals dated July 2013

* = Chromium III Standard/Chromium VI Standard

BGS = below ground surface

mg/kg =milligrams per kilogram

NE = Not Established

N/A = Not Applicable NA = Not Analyzed

Table 2

Summary of Groundwater Analytical Results Former TAMP Facility

Report of Limited Soil and Groundwater Assessment

	Analytical Method								620	00B								625BNA		8082						Priority	Pollutar	t Metals					
	Contaminant of Conce	rn)e	ethane	zene	nzene	ene	nzene	nzene	oluene	enzene	enzene	le	/lbenzene	/lbenzene	enes	ene	nthalene	ıthalene		ver	enic	llium	mium	mium	pper	.cury	skel	ad	mony	nium	llium	inc
Well ID	Date Collected (m/dd/yy)	Depth to Water (Ft. Below TOC) Measured 10/31/13	Benzen	1,2-Dichloro	Ethylbenz	I-Propylber	Naphthal	N-Butylber	N-Propylbe	p-Isopropylt	Sec-Butylbe	Tert-Butylb	Toluen	1,2,4-Trimethy	1,3,5-Trimethy	Total Xyl	Naphthal	2-Methylnaph	1-Methylnapł	PCBs	Total Sil	Total Ars	Total Bery	Total Cadn	Total Chro	Total Cop	Total Mer	Total Nic	Total Le	Total Antii	Total Sele	Total Thalliu	Total Zi
TW-1	10/3/2013	16.65	1,490	7.92	0.2J	13.3	25.4	0.41J	2.20	BQL	0.97	0.29J	0.64	BQL	BQL	0.32J	101	11.2J	8.35J	BQL	BQL	BQL	BQL	BQL	83.0	118	BQL	38.7	BQL	BQL	BQL	BQL	193
TW-2	10/3/2013	6.62	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	7.06	1.07	BQL	83.9	81.4	BQL	36.4	BQL	BQL	BQL	BQL	91.6
TW-3	10/3/2013	12.81	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	63.9	57.9	BQL	33.9	BQL	BQL	BQL	BQL	119
MWC-1	10/3/2013	13.83	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	12.3	25.4	24.3	BQL	6.20	32.2	BQL	BQL	BQL	214
TW-4	10/31/2013	15.07	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TW-5	10/31/2013	10.60	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TW-6	10/31/2013	13.32	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TW-7	10/31/2013	18.42	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TW-8	10/31/2013	17.26	406	BQL	153	124	58.5	6.80	59.1	12.8	11.6	BQL	9.30	89.2	40.7	198	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TW-9	10/31/2013	16.20	2.05	BQL	BQL	0.24J	BQL	BQL	BQL	BQL	BQL	BQL	BQL	0.13J	BQL	0.54J	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	NC2LGWQS (µg/l)		1	0.4	600	70	6	70	70	25	70	70	600	400	400	500	6	30	1	N/A	20	10	4*	2	10	1,000	1	100	15	1*	20	0.2*	1,000

= Values are those that exceed the North Carolina 2L Groundwater Quality Standard (NC2LGWQS)

BQL = not detected above laboratory detection standard

Results are reported in µg/I

µg/L = micrograms per liter

TOC = top of casing

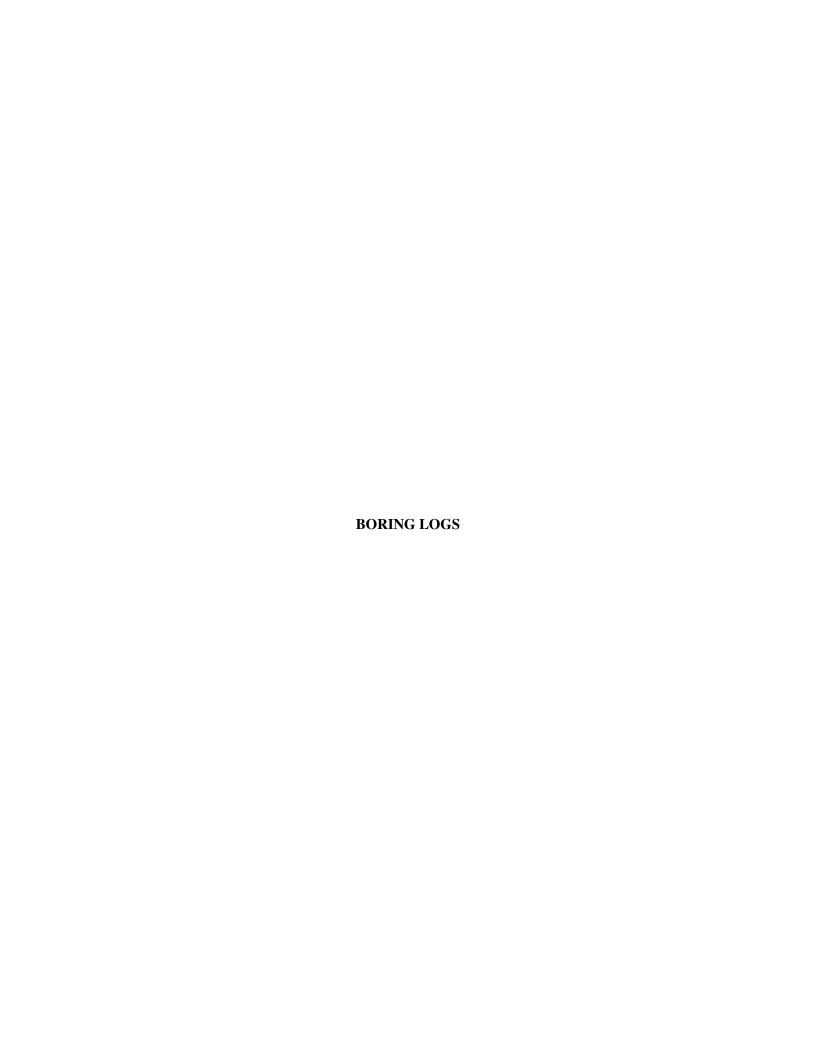

* = Interim Maximum Allowable Concentration

Table 3
Well Construction Information
Former TAMP Facility
Limited Soil and Groundwater Assessment

Monitoring Well ID	Installation Date	Well Diameter Inches	Screened Interval (feet)	Total Depth (feet)	Depth to Water (Feet TOC) October 31, 2013	Relative Elevation (Feet TOC)**	Groundwater Elevation (feet)
TW-1	10/2/2013	1	10-25	25	16.65	108.12	91.47
TW-2	10/2/2013	1	10-25	25	6.62	93.59	86.97
TW-3	10/2/2013	1	10-25	25	12.81	98.00	85.19
MWC-1	12/7/1993	2	9.4-29	29	13.83	100.00	86.17
TW-4	10/31/2013	1	10-20	20	15.07	112.18	97.11
TW-5	10/31/2013	1	10-20	20	10.60	104.54	93.94
TW-6	10/31/2013	1	10-20	20	13.32	110.32	97.00
TW-7	10/31/2013	1	10-25	25	18.42	106.23	87.81
TW-8	10/31/2013	1	10-25	25	17.26	108.76	91.50
TW-9	10/31/2013	1	10-25	25	16.20	107.55	91.35

^{** -} The top-of-casing elevation of each functioning well relative to an arbitrary benchmark (MWC-1) was established with an assumed elevation of 100 feet.

^{-- =} Not Measured

Project: Former TAMP Site

Location: Burlington, NC

Date: October 2013

Project Manager: J. Ballsieper

Boring/Well ID:
S-1

Job No.: 1013130.002

Start Date: 10/2/13 Hole Diameter: 2.5" Total Depth: 5.0'

Complete Date: 10/2/13 Casing Diameter: Remarks: ________

Drilling Method: Geoprobe - Direct Push

Depth (feet)	Sample ID	Blows	Rec/Adv (in)	PID (ppm)	Water Table	Lithology	Geologic Description	Well Diagram
_				678.5			Mottled Orange, Yellow, and Red Silty Clay	
_				076.5			Boring terminated @ 5 feet bls	_
10								10—
_								
_								_
20								20 —
_								_
30 —						-		30 —
_								_
_								_
40 —								40 —
_								_
-								_
50 —								50 —
-								_
=								_
60 —								60 —
								_

Project: Former TAMP Site

Location: Burlington, NC

Date: October 2013

Project Manager: J. Ballsieper

Job No.: 1013130.002

Start Date: 10/2/13 Hole Diameter: 2.5" Total Depth: 5.0'

Complete Date: 10/2/13 Casing Diameter: Remarks: ________

Drilling Method: Geoprobe - Direct Push

Brown Red Sandy Clay Doring terminated @ 5 feet bis 10 20 20 30 40 40 60 60 60 60 60 60 60 6	Depth (feet)	Sample ID	Blows	Rec/Adv (in)	PID (mdd)	Water Table	Lithology	Geologic Description	Well Diagram
10					287.4			Brown Red Sandy Clay	- -
20 20	_							Boring terminated @ 5 feet bls	-
20 20									-
30 30 - 30 - 30 - 30 - 30 - 30 - 30 - 3	10								10—
30 30 - 30 - 30 - 30 - 30 - 30 - 30 - 3									
30 30 - 30 - 30 - 30 - 30 - 30 - 30 - 3	_								_
30 30 - 30 - 30 - 30 - 30 - 30 - 30 - 3									_
40	20								20 —
40	-								-
40	-								-
40									_
40	20								20 —
50	30 _								30
50	_								_
50	_								-
50	-								-
50 — 50 — 60 — 60 —	40 —								40 —
50 — 50 — 60 — 60 —	_								-
50 — 50 — 60 — 60 —									
60									
60	50 —								50 _
60									50 —
60	_								-
60 —	_								-
									-
	60 —								60 —

Project: Former TAMP Site

Location: Burlington, NC

Date: October 2013

Project Manager: J. Ballsieper

Job No.: 1013130.002

Start Date: 10/2/13	Hole Diameter: 2.5"	Total Depth: 5.0'
Complete Date: 10/2/13	Casing Diameter:	Remarks:
	Drilling Method: Geoprobe - Direct Push	

Depth (feet)	Sample ID	Blows	Rec/Adv (in)	PID (ppm)	Water Table	Lithology	Geologic Description	Well Diagram
_				645.8			Reddish Brown and Orange Sandy Clay	_
_							Boring terminated @ 5 feet bls	_
10								10—
_								_
_								_
20 _								20 —
_								
_								_
30 —								30 —
_								_
_								_
40 —								40 —
_								_
								_
50 —								50 —
								_
60 —								60 —
								_

Project: Former TAMP Site

Location: Burlington, NC

Date: October 2013

Project Manager: J. Ballsieper

Job No.: 1013130.002

Start Date: 10/2/13 Hole Diameter: 2.5" Total Depth: 5.0'

Complete Date: 10/2/13 Casing Diameter: Remarks: _______

Drilling Method: Geoprobe - Direct Push

Depth (feet)	Sample ID	Blows	Rec/Adv (in)	PID (bpm)	Water Table	Lithology	Geologic Description	Well Diagram
_				706.8			Red Orange Silty Clay	
_				,,,,,			Boring terminated @ 5 feet bls	-
-								10—
10								
_								
_								_
_								_
20								20 —
_								_
_								-
_								-
_								-
30 —								30 —
_								_
40 —								40 —
_								- -
								_
_								_
_								_
50 —								50 —
								_
_								-
_								-
_								-
60 —								60 —

Project: Former TAMP Site

Location: Burlington, NC

Date: October 2013

Project Manager: J. Ballsieper

Job No.: 1013130.002

Start Date: 10/2/13 Hole Diameter: 2.5" Total Depth: 5.0'

Complete Date: 10/2/13 Casing Diameter: Remarks: ________

Drilling Method: Geoprobe - Direct Push

Depth (feet)	Sample ID	Blows	Rec/Adv (in)	PID (mdd)	Water Table	Lithology	Geologic Description	Well Diagram
_ _				3.8			Orange Sandy Clay	-
_							Boring terminated @ 5 feet bls	_
_								_
10						1		10—
_								_
_								-
								-
_								-
20								20 —
								-
_								-
_								_
_								-
30 —								30 —
_								-
								-
						-		-
_								_
40 —						_		40 —
_								-
_						-		
_								-
_								-
50 —						1		50 —
=								-
_								-
								=
-								
60 —								60 —
_								
_								_

Geologist:	

Project: Former TAMP Facility

Location: Burlington, NC

Boring/Well ID:

TW-1/TW1-5

Project Manager: J. Ballsieper

Job No.: 1013130.002

Start Date: 10/2/2013 Hole Diameter: 2.5" Total Depth: 25.0'

Complete Date: 10/2/2013 Casing Diameter: 1" Remarks: _______

Drilling Method: Geoprobe - Direct Push

Depth (feet)	Sample ID	Blows	Rec/Adv (in)	PID (ppm)	Water Table	Lithology	Geologic Description	Well Diagram Ground Surface
-				1,902			Orange Sandy Clay (stained gray-green)	(10.0') 1" Bentonite _
- 1 0-				442.8		-	Orange Tan Sandy Clay	10—
-	_			1,014			Tan to Med. Gray Sand	
20 _	-			318.4			Brown Orange Silty Clay (Moist)	(15.0') 1" - (17') #2 Quartz Sand _
-							No Sample	
-							Boring Terminated @ 25 feet bls	_
30 -								30 —
-								
40 —								40 —
-								
50 —								50 —
-	_							_ _
- - 60 —								
-	_							60 —

Project: Former TAMP Facility

Location: Burlington, NC

Date: October 2013

Project Manager: J. Ballsieper

Job No.: 1013130.002

Start Date: 10/2/2013 Hole Diameter: 2.5" Total Depth: 25.0'

Complete Date: 10/2/2013 Casing Diameter: 1" Remarks: _______

Drilling Method: Geoprobe - Direct Push

Depth (feet)	Sample ID	Blows	Rec/Adv (in)	OIId (mdd)	Water Table	Lithology	Geologic Description	Well Diagram Ground Surface
_				43.2			Med. Gray Sandy Clay (Moist @ 5')	(10.0') 1" PVC Casing Bentonite _
10				N/A			Gray Med. Grained Sand	10—
_				N/A			Gray to Tan Silty Clay	
20				N/A			Lt. Gray to Tan Silty Clay	(15.0') 1"
				N/A			Tan Silty Sand (Wet)	
30							Boring Terminated @ 25 feet bls	30 —
_ _ _								-
40 —								40 —
- - -								-
50						•		50 —
								-
60 —								60 —
_								_

Project: Former TAMP Facility

Location: Burlington, NC

Boring/Well ID:

TW-3/TW3-5

Project Manager: J. Ballsieper

Job No.: 1013130.002

Start Date: 10/2/2013 Hole Diameter: 2.5" Total Depth: 25.0'

Complete Date: 10/2/2013 Casing Diameter: 1" Remarks: _______

Drilling Method: Geoprobe - Direct Push

Depth (feet)	Sample ID	Blows	Rec/Adv (in)	PID (bpm)	Water Table	Lithology	Geologic Description	Well Diagram Ground Surface			
							Burnt Wood Pieces				
_				337.1			Gray to Orange Silty Clay	(10.0') 1" Bentonite _			
10				37.2			Tan Sand - Saprolite	10—			
_				15.8			Brown to Orange Sandy Clay				
20							Tan to Orange Sandy Clay (Moist)	(15.0°) 1"			
				N/A			Boring Terminated @ 25 feet bls				
_								-			
30 —								30 —			
_								_			
_								_			
-								-			
40 —								40 —			
_											
_								_			
50 —								50 —			
-								-			
-								-			
60 —								60 —			
-								_			
_								_			

Project: Former TAMP Facility

Location: Burlington, NC

Boring/Well ID:

TW-4

Project Manager: J. Ballsieper

Job No.: 1013130.002

Start Date: 10/30/2013 Hole Diameter: 2.5" Total Depth: 20.0'

Complete Date: 10/30/2013 Casing Diameter: 1" Remarks: _______

Drilling Method: Geoprobe - Direct Push

Depth (feet)	Sample ID	Blows	Rec/Adv (in)	PID (ppm)	Water Table	Lithology	Geologic Description	Well Diagram Ground Surface
_				2.2			Mottled Reddish Brown to Light Orange Brown Silt	(10.0') 1" PVC Casing Bentonite
10				2.7			Reddish Brown fine Sandy Silt	
- - -				10.6			Light Brown Silty Fine Sand (Moist to Wet)	(10.0') 1" PVC Screen Quartz Sand
20							Boring Terminated @ 20 feet bls	_
30 —								30 —
_								_
40 —								40 —
_								
50 —								50 —
-								
60 —								
								60 —

Project: Former TAMP Facility

Location: Burlington, NC

Date: October 2013

Project Manager: J. Ballsieper

Job No.: 1013130.002

Start Date: 10/30/2013 Hole Diameter: 2.5" Total Depth: 20.0'

Complete Date: 10/30/2013 Casing Diameter: 1" Remarks: _______

Drilling Method: Geoprobe - Direct Push

Depth (feet)	Sample ID	Blows	Rec/Adv (in)	PID (mdd)	Water Table	Lithology	Geologic Description	Well Diagram Ground Surface
_ _ _ _				15.5			Mottled Reddish Brown to Light Orange Brown Silt	(10.0') 1" PVC Casing Bentonite
10 - - -				9.3				(10.0°) 1" Quartz Sand
20							Boring Terminated @ 20 feet bls	
_ _ _								_
30 —								30 —
_								_
40 —								40 —
_								_
								_
50 —								50 —
_								_
60 —								60 —
_								_

Project: Former TAMP Facility

Location: Burlington, NC

Date: October 2013

Project Manager: J. Ballsieper

Job No.: 1013130.002

Start Date: 10/30/2013 Hole Diameter: 2.5" Total Depth: 20.0'

Complete Date: 10/30/2013 Casing Diameter: 1" Remarks: _______

Drilling Method: Geoprobe - Direct Push

Depth (feet)	Sample ID	Blows	Rec/Adv (in)	PID (mdd)	Water Table	Lithology	Geologic Description	Well Diagram Ground Surface
- - -				47.8			Reddish Brown to Light Orange Brown Silty Fine Sand	(10.0') 1" PVC Casing Bentonite
10				93.0			Reddish Brown to Light Orange Brown Silt (Moist)	(10.0') 1" PVC Screen Quartz Sand
20							Boring Terminated @ 20 feet bls	-
_								
30 —								30 —
_								
_ _								_
40 —								40 —
_								_
-								_
50 —								50 —
_								
60 —								60 —
_ 								

Geologist:	

Project: Former TAMP Facility

Location: Burlington, NC

Date: October 2013

Project Manager: J. Ballsieper

Job No.: 1013130.002

Start Date: 10/30/2013 Hole Diameter: 2.5" Total Depth: 25.0'

Complete Date: 10/30/2013 Casing Diameter: 1" Remarks: _______

Drilling Method: Geoprobe - Direct Push

Depth (feet)	Sample ID	Blows	Rec/Adv (in)	PID (mdd)	Water Table	Lithology	Geologic Description	Well Diagram Ground
_ _ _				44.5			Reddish Brown to Light Orange Brown Silty Fine Sand	(10.0') 1" PVC Casing Bentonite —
1 0				131.9				10—
_ _ _				231.5			Light Brown Fine to Medium Sand (Moist)	(15.0') 1" – PVC Screen (17) #2 Quartz Sand _
20							D. i.e. T. wind all C. 25 S. Alla	20 —
30 —							Boring Terminated @ 25 feet bls	30 —
_ _ _								
40 —								40 —
50 —								50 —
60 —								60 —

Project: Former TAMP Facility

Location: Burlington, NC

Date: October 2013

Project Manager: J. Ballsieper

Job No.: 1013130.002

Start Date: 10/30/2013 Hole Diameter: 2.5" Total Depth: 25.0'

Complete Date: 10/30/2013 Casing Diameter: 1" Remarks: _______

Drilling Method: Geoprobe - Direct Push

Depth (feet)	Sample ID	Blows	Rec/Adv (in)	PID (mdd)	Water Table	Lithology	Geologic Description	Well Diagram Ground Surface
_				83.7			Dark Gray Fine Sand w/gravel (Petroleum Odor)	(10.0') 1" PVC Casing Bentonite —
10				308.5			Brownish Orange Fine Sand (Petroleum Odor)	10—
_ _ _				5,000+				(15.0') 1" - (17') #2 Quartz Sand -
20				1,685			Light Brown Fine to Medium Sand (Moist)	20 —
30 —							Boring Terminated @ 25 feet bls	30
_								
40 —								40 —
								_
50 —								50 —
60 —								-
_ _ _								60 —

Project: Former TAMP Facility

Location: Burlington, NC

Date: October 2013

Project Manager: J. Ballsieper

Job No.: 1013130.002

Start Date: 10/30/2013 Hole Diameter: 2.5" Total Depth: 25.0'

Complete Date: 10/30/2013 Casing Diameter: 1" Remarks: _______

Drilling Method: Geoprobe - Direct Push

Depth (feet)	Sample ID	Blows	Rec/Adv (in)	PID (bpm)	Water Table	Lithology	Geologic Description	Well Diagram Ground Surface
_				167.1			Brownish Orange Silty Fine Sand	(10.0') 1" PVC Casing Bentonite —
10				397			Reddish Brown Fine Sandy Silt	10—
_ _ _				392				(15.0) 1"
20				N/A			Light Brown Fine to Medium Sand (Moist)	20 —
30 —							Boring Terminated @ 25 feet bls	30 —
- - -								
40 —						_		40 —
_ _ _								_ _ _
50 —								50 —
60 —								60 —
_								

Chemical Analysis for Selected Parameters and Sampling Locations Identified as TAMP (A Progress Environmental Project, collected 02 October 2013)

<u>(A</u>	Progress Environmental Project, c	ollected 02 October 2	2013)							
1.	Volatile Organics	Quantitation	S1-5	S2-5	S3-5	S4-5	S5-5	TW1-5	TW2-5	TW3-5
1.	EPA Method 8260 B	Limit				5.2	35.5		1 112-5	1 113-3
	Parameter	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
	Acetone	0.100	BOL	BOL	BQL	BQL	BOL	BQL	BQL	BQL
	Benzene	0.005	BQL							
	Bromobenzene	0.005 0.005	BQL BOL	BQL						
	Bromochloromethane Bromodichloromethane	0.005	BOL	BQL BQL	BQL BQL	BQL BOL	BQL BOL	BQL BOL	BOL BOL	BQL BQL
	Bromoform	0.005	BQL	BQL	BQL	BQL	BOL	BOL	BOL	BOL
	Bromomethane	0.010	BQL	BQL	BQL	BQL	BQL	BOL	BQL	BQL
	2-Butanone	0.100	BQL							
	N-Butylbenzene Sec-Butylbenzene	0.005 0.005	BQL BQL	BQL BQL	BQL BOL	BQL BOL	BQL BQL	BQL BQL	BQL BOL	BQL BOL
	Tert-Butylbenzene	0.005	BOL	BOL	BOL	BOL	BQL	BOL	BOL	BOL
	Carbon Tetrachloride	0.010	BQL							
	Chlorobenzene	0.005 0.005	BQL BOL	BQL						
	Dibromochloromethane Chloroethane	0.003	BOL	BQL BOL	BQL BQL	BQL BQL	BQL BQL	BQL BQL	BQL BOL	BQL BQL
	Chloroform	0.005	BQL	BOL						
	Chloromethane	0.010	BQL							
	2-Chlorotoluene 4-Chlorotoluene	0.005 0.005	BQL BOL	BQL BQL	BQL BQL	BQL BQL	BQL BQL	BQL	BQL	BQL
	1,2-Dibromoethane (EDB)	0.005	BOL	BOL	BOL	BOL	BOL	BQL BQL	BQL BQL	BQL BOL
	1,2-Dichlorobenzene	0.005	BQL							
	1.3-Dichlorobenzene	0.005	BQL							
	1.4-Dichlorobenzene Dichlorodifluoromethane	0.005 0.005	BQL BOL	BQL BOL	BQL BQL	BQL BOL	BQL BOL	BQL	BQL	BQL
	1,1-Dichloroethane	0.005	BQL	BQL	BOL	BOL	BOL	BQL BQL	BQL BOL	BQL BQL
	1,2-Dichloroethane	0.005	BQL							
	1,1-Dichloroethene	0.005	BOL	BQL						
	Cis-1,2-Dichloroethene Trans-1,2-Dichloroethene	0.005 0.005	BQL BOL	BQL BQL	BQL BQL	BQL BQL	BQL BQL	BQL BOL	BQL BQL	BQL BOL
	1,2-Dichloropropane	0.005	BOL	BQL	BQL	BOL	BOL	BQL	BOL	BOL
	1.3-Dichloropropane	0.005	BQL							
	2.2-Dichloropropane	0.005	BQL							
	1,1-Dichloropropane Cis-1,3-Dichloropropene	0.005 0.010	BQL BQL	BQL BOL						
	Trans-1,3-Dichloropropene	0.010	BQL	BQL	BQL	BQL	BOL	BQL	BOL	BOL
	Ethyl Acetate	0.010	BQL							
	Ethyl Benzene	0.005 0.050	BQL BOL	BQL BQL	BQL BQL	BQL BQL	BQL	BQL	BQL	BQL
	2-Hexanone I-Propylbenzene	0.005	BOL	BOL	BQL	BOL	BQL BQL	BQL BQL	BQL BQL	BQL BQL
	Isopropyl ether (IPE)	0.010	BQL	BOL						
	p-Isopropyltoluene	0.005	BQL							
	Methylene Chloride 4-Methyl-2-Pentanone	0.020 0.100	BQL BQL	BQL BQL	BQL BQL	BQL BQL	BQL BOL	BQL BQL	BQL BQL	BQL BQL
	Methyl-Tert-Butyl ether (MTBE)	0.010	BOL	BOL	BOL	BOL	BQL	BOL	BOL	BOL
	Naphthalene	0.010	BQL							
	N-Propylbenzene	0.005	BQL							
	Styrene 1.1,2,2-Tetrachloroethane	0.010 0.005	BQL BOL	BQL BQL	BQL BQL	BQL BQL	BQL BQL	BQL BQL	BQL BQL	BQL BOL
	Tetrachloroethene	0.005	BQL	BQL	BQL	BQL	BQL	BQL	BOL	BOL
	Toluene	0.005	BQL	BOL						
	1,1,1-Trichloroethane 1,1,2-Trichloroethane	0.005 0.005	BQL BQL	BQL BOL						
	Trichloroethene	0.005	BOL	BOL	BOL	BQL	BOL	BQL	BOL	BQL
	Trichlorofluoromethane	0.005	BQL							
	1,2,3-Trichlorobenzene	0.005	BQL							
	1.2.4-Trichlorobenzene 1.2.3-Trichloropropane	0.005 0.015	BQL BQL	BQL BOL	BQL BOL	BQL BOL	BQL BQL	BQL BQL	BQL BQL	BQL BQL
	1,2,4-Trimethylbenzene	0.005	BQL							
	1.3.5-Trimethylbenzene	0.005	BQL							
	Vinyl Acetate Vinyl Chloride	0.050 0.010	BQL BQL	BQL BQL	BQL	BQL	BQL	BQL	BQL	BQL
	Total Xylenes	0.010	BQL BQL							
	Carbon Disulfide	0.100	BQL							
	Acrylonitrile	0.200	BQL							
	Trans-1.4-Dichloro-2-butene Methyl Iodide	0.100 0.010	BQL BQL	BQL BQL	BQL BQL	BQL BQL	BQL BQL	BQL BQL	BQL	BQL
	Dibromomethane	0.010	BQL	BQL	BQL	BOL	BOL	BOL	BQL BQL	BQL BQL
	1,1,1,2-Tetrachloroethane	0.005	BQL							
	Ethanol	0.100	BQL							
	1.2-Dibromo-3-Chloropropane(DBCP)	0.025	BQL							
	Dilution Factor		l	1	1	1	1	1	1	ı
	Sample Number		769362	769363	769364	769365	769366	769367	769368	769369
	Sample Date		10/02/13	10/02/13	10/02/13	10/02/13	10/02/13	10/02/13	10/02/13	10/02/13
	Sample Time (hrs)		1040	1050	1058	1112	1130	1245	1315	1340
	Date Analyzed		10/04/13	10/04/13	10/04/13	10/04/13	10/04/13	10/04/13	10/04/13	10/04/13
	Time Analyzed		1703	1735	1806	1836	1909	1941	2012	2044
	Surrogate Recovery (DBFM)	Range (70-130%)	104%	106%	105%	108%	107%	111%	108%	111%
	Surrogate Recovery (Toluene-d8)	Range (70-130%)	117%	119%	117%	111%	110%	112%	109%	106%
	Surrogate Recovery (4-BFB)	Range (70-130%)	98%	97%	95%	96%	100%	99%	96%	101%

Chemical Analysis for Selected Parameters and Sampling Locations Identified as TAMP (A Progress Environmental Project, collected 02 October 2013)

	tile Organics od 8270 BNA	Quantitation Limit	S1-5	S2-5	S3-5	S4-5	S5-5	TW1-5	TW2-5	TW3-5
Parameter		(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Acenaphthe		0.33	BQL							
Acenaphthy Anthracene		0.33 0.33	BQL BOL	BQL BQL	BQL BQL	BQL BOL	BQL BQL	BQL BOL	BQL BQL	BQL BQL
Benzoic Ac		6.67	BOL	BOL	BOL	BOL	BQL	BOL	BOL	BOL
Benzo(a)an		0.33	BQL							
Benzo(b)fli		0.33	BQL							
Benzo(k)fli		0.33	BQL	BQL	BQL	BQL BOL	BQL	BQL	BQL	BQL
Benzo(ghi) Benzo(a)py		0.33 0.33	BQL BOL	BQL BQL	BQL BQL	BOL	BQL BQL	BQL BQL	BQL BQL	BQL BQL
Benzyl Alc		3.33	BQL							
	oethoxy)methane	0.33	BQL							
	oethyl)ether	0.33	BQL							
	oisopropyl)ether -hexyl)phthalate	0.33 0.33	BQL BOL	BQL BQL						
	enyl phenyl ether	0.33	BQL	BQL	BOL	BOL	BOL	BOL	BOL	BOL
	yl phthalate	0.33	BQL							
4-Chloroan		1.65	BQL							
4-Chloro-3 2-Chlorona	-methylphenol	0.33 0.33	BQL BOL	BQL BQL	BQL BQL	BQL BQL	BQL BOL	BQL BQL	BQL BQL	BQL BQL
2-Chloroph		0.33	BQL	BQL	BQL	BOL	BOL	BQL	BOL	BOL
	enyl phenyl ether	0.33	BQL							
Chrysene		0.33	BQL							
	h)anthracene	0.33 0.33	BQL BQL	BQL BOL	BQL BOL	BQL BQL	BQL BOL	BQL BOL	BQL BOL	BQL BOL
Dibenzofur Di-N-Butyl		0.33	BOL	BQL	BQL	BOL	BOL	BOL	BOL	BOL
1,2-Dichlor		0.33	BQL							
1.3-Dichlor		0.33	BQL							
1.4-Dichlor		0.33 0.66	BQL BQL	BQL BQL	BQL BQL	BQL BQL	BQL BQL	BQL BOL	BQL BQL	BQL BQL
3,3-Dichlor 2,4-Dichlor	robenzidine rophenol	0.33	BQL BQL	BQL	BQL	BOL	BQL	BOL	BQL	BOL
Diethyl pht		0.33	BQL							
2.4-Dimeth	ylphenol	0.33	BQL							
Dimethyl p		0.33	BQL BOL	BQL BOL	BQL BQL	BQL BOL	BQL BQL	BQL BOL	BQL BQL	BQL BQL
4,6-Dinitro 2,4-Dinitro	-2-methylphenol	1.65 1.65	BOL	BQL	BQL	BQL	BOL	BOL	BOL	BQL
2,4-Dinitro		0.33	BQL							
2,6-Dinitro		0.33	BQL	BQL	BOL	BQL	BQL	BQL	BQL	BQL
Di-N-Octy		0.33	BQL	BQL BQL	BQL BQL	BQL BQL	BQL BQL	BQL BOL	BQL BQL	BQL BQL
Azobenzen Fluoranthe		3.33 0.33	BQL BOL	0.044 J	BOL	BOL	BOL	BOL	BOL	BOL
Fluorene	iic	0.33	BQL							
Hexachloro	obenzene	0.33	BQL							
Hexachlor		0.33	BQL	BQL	BQL	BQL BQL	BQL BQL	BQL BQL	BQL BQL	BQL BQL
Hexachlore Hexachlore	ocyclopentadiene	0.33 0.33	BQL BOL	BQL BQL	BQL BOL	BOL	BQL	BOL	BQL	BOL
	.3-cd) pyrene	0.33	BQL							
Isophorone		0.33	BQL							
2-Methyln		0.33	BQL	BQL BQL						
2-Methylpl 4-Methylpl		1.65 1.65	BQL BOL	BQL	BQL	BOL	BOL	BOL	BOL	BOL
Nitrobenze		0.33	BQL							
2-Nitrophe		0.33	BQL							
4-Nitrophe		1.65 0.33	BQL BQL							
	liphenylamine i-n-propylamine	0.33	BOL	BOL	BOL	BOL	BQL	BOL	BQL	BOL
Pentachlor		1.65	BQL	BÒL	BQL	BQL	BQL	BQL	BQL	BQL
Phenanthro	ene	0.33	BQL	BQL	BQL	BQL	BOL	BQL	BQL	BQL
Phenol		0.33 0.33	BQL BQL	BQL BQL	BOL BOL	BQL BQL	BQL BQL	BQL BQL	BQL BQL	BQL BQL
Pyrene 1 2 4-Trick	lorobenzene	0.33	BQL	BOL	BQL	BOL	BOL	BQL	BQL	BQL
	lorophenol	0.33	BQL	BOL						
	1,6-dinitrophenol	1.65	BQL	BQL	BQL BOL	BQL	BQL	BQL	BQL	BQL
Benzidine	nylhydrazine	1.65 1.65	BQL BQL							
	dimethylamine	0.33	BQL	BQL	BQL	BQL	BQL	BOL	BQL	BQL
Napthalen		0.33	BQL							
1-methyl n	apthalene	0.33	BQL							
Dilution F	actor		ı	1	1	1	1	1	1	1
Sample N			769362	769363	769364	769365	769366	769367	769368	769369
Sample D			10/02/13	10/02/13	10/02/13	10/02/13	10/02/13	10/02/13	10/02/13	10/02/13
Sample Ti			1040 10/04/13	1050 10/04/13	1058 10/04/13	1112 10/04/13	1130 10/04/13	1245 10/04/13	1315 10/04/13	1340 10/04/13
Date Extr			10/04/13	10/04/13	10/04/13	10/04/13	10/04/13	10/04/13	10/04/13	10/04/13
Date Anal Time Ana	•		1541	1628	1713	1758	1844	1928	2059	2014
Euronoto	Recovery	Range								
(2-Fluoro	•	(21-110%)	48%	45%	49%	63%	63%	58%	59%	60%
(Phenol-d		(10-110%)	43%	43%	46%	58%	59%	55%	54%	57%
(Nitroben	•	(35-114%)	58%	56%	62%	78%	77%	72%	74%	71%
	bromophenol)	(10-123%)	52%	48%	49%	64%	69%	68%	68%	69%
	•									
(2,4,6-17) (2-Fluoro (4-Terphe	biphenyl)	(43-116%) (33-141%)	62% 69%	61% 61%	69% 64%	84% 80%	82% 83%	80% 81%	84% 92%	81% 86%

Chemical Analysis for Selected Parameters and Sampling Locations Identified as TAMP (A Progress Environmental Project, collected 02 October 2013)

III.	Priority Pollutant	S1-5	S2-5	S3-5	S4-5	S5-5	TW1-5	TW2-5	TW3-5
	Metals								
	<u>Parameter</u>	(mg/kg)	(mg/kg)	(mg/kg)	<u>(mg/kg)</u>	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
	Silver, Total	<1.35	<1.17	<1.19	<1.37	<1.20	<1.22	<1.10	<1.24
	Arsenic, Total	<1.35	<1.17	<1.19	<1.37	<1.20	<1.22	<1.10	<1.24
	Beryllium, total	0.178	0.456	0.182	0.654	0.408	0.169	0.418	0.690
	Cadmium, Total	< 0.135	< 0.117	< 0.119	< 0.137	< 0.120	< 0.122	< 0.110	< 0.124
	Chromium, Total	14.3	30.9	11.7	39.9	7.07	8.36	59.9	95.4
	Copper, Total	21.3	43.4	8.41	64.4	14.0	8.43	22.2	48.2
	Mercury, Total	0.057	0.068	0.035	< 0.045	< 0.037	< 0.037	0.042	< 0.041
	Nickel, Total	3.17	8.80	2.65	4.24	3.80	2.31	25.4	45.0
	Lead, Total	6.86	5.04	3.08	10.4	7.83	2.70	< 0.551	< 0.618
	Antimony, Total	<6.75	<5.86	<5.97	<6.84	<6.00	<6.11	<5.51	<6.18
	Selenium, Total	<1.35	<1.17	<1.19	<1.37	<1.20	<1.22	<1.10	<1.24
	Thallium, Total	<1.35	<1.17	<1.19	<1.37	<1.20	<1.22	<1.10	<1.24
	Zinc, Total	10.0	29.5	11.9	20.8	30.1	11.2	58.2	153
	Sample Number:	769362	769363	769364	769365	769366	769367	769368	769369
	Sample Collected Date:	10/02/13	10/02/13	10/02/13	10/02/13	10/02/13	10/02/13	10/02/13	10/02/13
	Sample Collected Time (Hrs):	1040	1050	1058	1112	1130	1245	1315	1340

Chemical Analysis for PCB's by EPA Method 8082 (A Progress Environmental Project Identified as TAMP Collected 02 October 2013

I. Sample <u>Location</u>	Sample <u>Number</u>	Sampling <u>Date</u>	Sampling <u>Time</u>	PCB 1016 (mg/kg)	PCB 1221 (mg/kg)	PCB 1232 (mg/kg)	PCB 1242 (mg/kg)	PCB 1248 (mg/kg)	PCB 1254 (mg/kg)	PCB 1260 (mg/kg)
S1-5	769362	10/02/13	1040	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
S2-5	769363	10/02/13	1050	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
S3-5	769364	10/02/13	1058	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
S4-5	769365	10/02/13	1112	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
S5-5	769366	10/02/13	1130	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
TW1-5	769367	10/02/13	1245	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
TW2-5	769368	10/02/13	1315	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
TW3-5	769369	10/02/13	1340	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05

RESEARCH & ANALYTICAL LADORATORIES, INC. Analytical / Process Consultations Phone (336) 996-2841

CHAIN OF CUSTODY RECORD

WATER / WASTEWATER MISC.																
COMPANY POSS FOR STREET ADDRESS FOR BOY SERY CITY, STATE, ZIP CONTACT PURPLE TO THE							JOB NO.									
STREET ADDRESS							PROJECT AMP									
10 By 5884																
CITY, STATE, ZIP				SAMPLER NAME (PLEASE BRINT)			WATER/WASTEWATER MISC. WATER/WASTEWATER MISC. WATER/WASTEWATER MISC. WATER/WASTEWATER MISC. WATER/WASTEWATER MISC. REQUESTED ANALYSIS 8260, 8270, Pland St., PLBs									
WING				SAMPLER NAME (PLEASE BRINT)												
CONTACT PHONE				SAMPLER SIGNATURE												
Jesu 72.9999					,	(). 12			\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\							
SAMPLE NUMBER (LAB USE ONLY)	DATE		COMPG	RAB TEMF	RES	CHLORINE REMOVED (Y or N)		SAMPLE LOCATION / I.D.	NO. OF CONTAINERS	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	2/2/2/2/3				STED ANALYSIS	
769362	10/2/13	1040	\sqcup	X			5	51-5	6				_	8260, 827	, Planetals, PLBs	
363		1250						52-5	,						1	
364		1058						52-5 53-5 54-5 35-5 TW1-5 TW2-5 TW3-5								
365		28:12						54-5	1/							
3(d)		11:20						55-5								
367		12:45						7w1-5								
3(08)		1:15						762-5						7	,	
369	d/	1:40					V	7W3-5						d	/	
	Y								4							
		1														
	ž.															
RELINQUISHED BY DATE/TIME RECEIVED BY			REMARKS:													
RELINQUISHED BY DATE/TIME RECEIVED BY			005	Ne /												
RELINQUISHED BY		DATE/T	IME F	RÉCEIVE	D BY	1	76			00	ice					
				SAMPLE TEMPERATURE AT RECEIPT 2.8					7 2.8 °C	3.0						
						Order LE TEIN EIGHOLE / THEOLIT O										

Eight (8) soil samples were received in good condition on 03 October 2013. The samples were analyzed without difficulties unless noted below.

EPA 8270: One (1) Internal Standard is outside laboratory QA/QC range for RAL sample #769368 (TW2-5). The sample was re-extracted for confirmation. No target compounds were detected.

Sidney L. Champion

lidy 1. Chy

Director of Laboratory Services

Date

QA/QC Summary												
Method 8260 (50/100/500/2	1000 PPB				FILE NA	ME: SLO	C1004					
CLIENT: PROGRESS ENVIROMENTAL (PROJECT : TAMP)												
Sample ID		769362-3	· ·		Page 1 of 2							
Extraction Method	5035					VOA I	NSTR	UMEN	T(MS-2)			
Date Extracted	N/A											
Weight/Volume Used	5G/5ML											
Final Volume	5G/5ML											
Date Analyzed	10/04/13											
% Surrogate Recovery	90	117	98						=			
Acceptance Range	(70 - 130)	<u>[(70 - 130)</u>	(70 - 130)	LCS				00	LIMITS			
C	MDL	Method	LCS %	Acceptance	MS	MSD	RPD	RPD	PERCENT			
Compound	mg/kg	Blank	Recovery	Range	% Rec. *	% Rec. *	KID	KID	RECOVERY			
Dichlorodifluoromethane	0.00047	ND	82	56 - 126								
Chloromethane	0.00050	ND	96	62 - 133								
Vinyl Chloride	0.00059	ND	98	67 - 136								
Bromomethane	0.00028	ND	83	72 - 130								
Chloroethane	0.00029	ND	92	73 - 138								
Trichlorofluoromethane	0.00037	ND	82	78 - 131								
Acetone	0.00159	ND	78	62 - 119								
Acrylonitrile	0.00036	ND	88	76 - 135								
2-Butanone	0.00152	ND	92	62 - 122								
1,1-Dichloroethene	0.00059	ND	94	82 - 133	95	96	1	14	61-145			
Methyl Iodide	0.00307	ND	108	70 - 136								
Carbon Disulfide	0.00042	ND	94	76 - 132								
Methylene Chloride	0.00138	ND	95	68 - 135								
Trans-1,2-Dichloroethene	0.00107	ND	96	80 - 134								
1,1-Dichloroethane	0.00036	ND	95	74 - 140								
Isopropyl ether (IPE)	0.00024	ND	99	67 - 139								
Methyl-Tert-Butyl ether (MTBE)	0.00032	ND	87	68 - 131								
Vinyl Acetate	0.00035	ND	85	67 - 127		ļ						
Cis-1,2-Dichloroethene	0.00031	ND	99	78 - 133								
2,2-Dichloropropane	0.00029	ND	86	72 - 123								
Bromochloromethane	0.00049	ND	97	71 - 139				ļ				
Chloroform	0.00029	ND	90	81 - 126				ļ				
1,1,1-Trichloroethane	0.00028	ND	84	76 - 129								
Carbon Tetrachloride	0.00081	ND	87	81 - 133								
1,1-Dichloropropene	0.00059	ND	93	80 - 135								
Benzene	0.00038	ND	96	78 - 131	106	108	2	11	76-127			
Ethyl Acetate	0.00074	ND	92	63 - 122		<u> </u>						
1,2-Dichloroethane	0.00055	ND	85	72 - 132			ļ					
Trichloroethene(TCE)	0.00028	ND	97	79 - 126	100	100	1	14	71-120			
1,2-Dichloropropane	0.00023	ND	102	79 - 126	_			 				
Dibromomethane	0.00043	ND	94	71 - 129			J	<u></u>				
COMMENTS:												

Method 8260	(50/100/500/1000 PPB QC)
vieiliuu ozuu	(20/100/200/1000 FFD QC)

FILE NAME: SLC1004

Page 2 of 2

CLIENT: PROGRESS EN	VIROMENTAL ((PROJECT:	TAMP)
---------------------	--------------	-----------	-------

Sample ID:	769362-369			LCS				QC LIMITS		
	MDL	Method	LCS %	Acceptance	MS	MSD	RPD	RPD	PERCENT	
Compound	mg/kg	Blank	Recovery	Range	% Rec. *	% Rec. *	KPD	KPD	RECOVERY	
Bromodichloromethane	0.00026	ND	90	71 - 126						
4-Methyl-2-Pentanone	0.00052	ND	121	67 - 122						
Cis-1,3-Dichloropropene	0.00023	ND	118	70 - 125						
Toluene	0.00027	ND	111	65 - 139	107	111	4	13	76-125	
Trans-1,3-Dichloropropene	0.00052	ND	107	65 - 131						
1,1,2-Trichloroethane	0.00041	ND	107	64 - 137						
Tetrachloroethene(PCE)	0.00026	ND	88	61 - 164						
2-Hexanone	0.00050	ND	105	63 - 118						
Dibromochloromethane	0.00037	ND	102	60 - 138						
1,3-Dichloropropane	0.00033	ND	110	64 - 135						
1,2-Dibromoethane (EDB)	0.00074	ND	110	68 - 131						
Chlorobenzene	0.00029	ND	92	87 - 121	97	96	1	13	75-130	
1,1,1,2-Tetrachloroethane	0.00041	ND	91	85 - 131						
Ethyl Benzene	0.00028	ND	92	91 - 121						
Total Xylenes	0.00056	ND	97	88 - 127						
Styrene	0.00037	ND	97	88 - 124						
Bromoform	0.00045	ND	96	66 - 133						
Isopropylbenzene	0.00027	ND	97	90 - 125						
Bromobenzene	0.00028	ND	93	81 - 128						
1,2,3-Trichloropropane	0.00043	ND	106	66 - 132						
Trans-1,4-Dichloro-2-butene	0.00050	ND	93	77 - 120						
N-Propylbenzene	0.00058	ND	94	88 - 123						
2-Chlorotoluene	0.00050	ND	92	86 - 126						
4-Chlorotoluene	0.00042	ND	91	82 - 125						
1,3,5-Trimethylbenzene	0.00054	ND	94	89 - 124						
Tert-Butylbenzene	0.00029	ND	93	89 - 128						
1,2,4-Trimethylbenzene	0.00056	ND	93	87 - 125						
Sec-Butylbenzene	0.00042	ND	94	88 - 127						
1,3-Dichlorobenzene	0.00041	ND	102	79 - 127						
1,1,2,2-Tetrachloroethane	0.00078	ND	90	72 - 128						
p-Isopropyltoluene	0.00048	ND	91	86 - 128						
1,4-Dichlorobenzene	0.00042	ND	94	80 - 122						
1,2-Dichlorobenzene	0.00039	ND	95	80 - 123						
N-Butylbenzene	0.00033	ND	93	84 - 127						
1,2-Dibromo-3-Chloropropane(DBC)	0.00067	ND	95	66 - 125						
1,2,4-Trichlorobenzene	0.00025	ND	103	76 - 117						
Naphthalene	0.00047	ND	108	79 - 119						
1,2,3-Trichlorobenzene	0.00036	ND	103	72 - 118						

Method: 8270 (100/200 PI	PB OC)		FILE NA	ME: SI	C1008-	MS3	Pa	ge 1 of	2		
CLIENT: PROGRESS EN		IENTAL					1	<u> </u>			
Sample ID:	1 V IICOIVIV	750050 050					INSTUMENT: MS-3				
Extraction Method	3550				MSTUN	TEIVI: IVI	.5-3				
Date Extracted	10/04/13										
							<u> </u>				
Weight Extracted	30G						ļ				
Final Extract Volume	1ML										
Date Analyzed	10/08/13										
% Surrogate Recovery	80	81	75	87	8	37	99				
Acceptance Range	(21 - 110)	(10 - 110)	(35 - 114)	(10 - 123)	(43 -	116)	(33 - 141)				
	·•			LCS Accept.	MS	MSD					
	MDL	Method	LCS %			04.5	RPD	QC L	IMITS		
Compound	mg/kg	Blank	Recovery	Range	% Rec.	% Rec.			% REC		
N-Nitrosodimethylamine	0.047	ND	76	51-108					<u> </u>		
Bis(2-chloroethyl)ether	0.066	ND	79	49-110							
Phenol	0.066	ND	78	52-118	71	73	3	42	12-110		
2-Chlorophenol	0.060	ND	78	55-111	85	87	2	40	27-123		
1,3-Dichlorobenzene	0.085	ND	79	54-108							
1,4-Dichlorobenzene	0.050	ND	80	55-112	80	83	3	28	36-97		
1,2-Dichlorobenzene	0.047	ND	78	53-112							
Benzyl Alcohol	0.087	ND	96	47-160							
2-Methylphenol(O-CREOSOL)	0.072	ND	84	35-127		.,.					
3&4-Methylphenol(M&P CREOSOL)	0.063	ND	81	47-132				<u> </u>			
Bis(2-chloroisopropyl)ether	0.063	ND	85	37-116			~				
N-nitrosodi-n-propylamine	0.057	ND	80	45-123	94	96	2	38	41-116		
Hexachloroethane	0.069	ND	76	52-107							
2-Nitrophenol	0.066	ND	84	56-117							
2,4-Dimethylphenol	0.079	ND	69	35-118							
Nitrobenzene	0.072	ND	73	50-99				ļ			
Isophorone	0.079	ND	73	48-100							
Bis(2-chloroethoxy)methane	0.063	ND	71	51-96			ļ				
Benzoic Acid	0.348	ND	79	D-136			ļ				
2,4-Dichlorophenol	0.066	ND	76	42-117			ļ				
1,2,4-Trichlorobenzene	0.047	ND	70	53-95	97	96	1	28	39-98		
4-Chloro-3-methylphenol	0.141	ND	74	49-128	91	89	1	42	23-97		
4-Chloroaniline	0.479	ND	74	44-116		 			<u></u>		
Hexachlorobutadiene	0.057	ND	76	39-121	<u> </u>		ļ <u>-</u>		<u> </u>		
2-Methylnaphthalene	0.056	ND_	79	63-105	<u> </u>	 	ļ		 		
Dibenzofuran	0.063	ND	81	50-128	<u> </u>	ļ			 		
2.4,6-Trichlorophenol	0.044	ND	81	23-167	<u> </u>	 		1	<u> </u>		
2,4,5-Trichlorophenol	0.107	ND	88	32-158	I		<u> </u>	<u> </u>			

FILE NAME: SLC1008-MS3 Page 2 of 2 Method: 8270 (100/200 PPB QC)

CLIENT: PROGRESS ENVIRONMENTAL (PROJECT:TAMP)

	MDL	Method	LCS %	LCS	MS	MSD			
Compound	mg/kg	Blank	Recovery	Acceptr	% Rec.	% Rec.	RPD	00	
2-Methyl-4,6-Dinitrophenol	0.170	ND	88	ange 64-140	70 ICC.	70 Rec.			LIMITS
4-Nitrophenol	0.170	ND	85	50-140	49	53	8	RPD 50	% REC
Hexachlorocyclopentadiene	0.232	ND	87	12-129	42		-	20	10-80
	0.079	ND	81	46-127					
2-Chloronaphthalene	0.046	ND	80	51-113			_		
Dimethyl phthalate		ND	76	41-128					
Acenaphthylene	0.066	ND	80	58-120				-	
2,6-Dinitrotoluene	0.075			49-129	74	75	1	21	46 110
Acenaphthene	0.057	ND	84	53-123	69		1	31	46-118
2,4-Dinitrotoluene	0.079	ND	87	49-127	09	69	1	38	24-96
Fluorene	0.060	ND	81						
Diethyl phthalate	0.072	ND	79	47-117					-
4-Chlorophenyl phenyl ether	0.050	ND	82	46-134					
2,4-Dinitrophenol	0.188	ND	93	45-147					
Azobenzene	0.083	ND	84	45-117		- 62	4		
Pentachlorophenol	0.129	ND	93	64-144	65	63	4	50	9-103
N-Nitrosodiphenylamine	0.066	ND	83	2-127					
4-Bromophenyl phenyl ether	0.085	ND	89	50-130					
Hexachlorobenzene	0.069	ND	85	50-131			_		
Phenanthrene	0.075	ND	83	50-135					-
Anthracene	0.072	ND	80	57-131					
Di-N-Butyl phthalate	0.097	ND	80	47-115					
Fluoranthene	0.085	ND	78	47-128			<u> </u>		
Benzidine	0.048	ND	39	D-150			<u> </u>		_
Pyrene	0.038	ND	87	56-120	79	81	3	31	26-127
Benzyl butyl phthalate	0.060	ND	87	55-122					
Benzo(a)anthracene	0.050	ND	87	62-119					
3,3-Dichlorobenzidine	0.122	ND	45	D-114					
Chrysene	0.060	ND	88	60-124				_	
Bis(2-ethyl-hexyl)phthalate	0.066	ND	84	46-124					
Di-N-Octyl phthalate	0.079	ND	86	49-131					
Benzo(b)fluoranthene	0.122	ND	112	60-132					
Benzo(k)fluoranthene	0.110	ND	62	39-137					
Benzo(a)pyrene	0.047	ND	88	63-126					
Indeno(1,2,3-cd) pyrene	0.094	ND	78	39-159					
Dibenzo(a,h)anthracene	0.088	ND	73	20-158					
Benzo(g,h,i)perylene	0.097	ND	73	40-158					

Page 1 of 1

Sample ID	769362-369		}			
Date Analyzed	10/9/2013	-				
% Surrogate Recovery	97	100				
Acceptance Limits	(70-130)	(70-130)				

					LCS					
Compound	MDL ug/kg	Method Blank	Trip/Field Blank	LCS % Recovery	Acceptance Range	MS	MSD	RPD	QC RPD	Limits MS & MSD
Aroclor-1016	0.003	BQL	N/A	94	70-130	101	95	6.12	30.0	65-135
Aroclor-1221	0.003	BQL	N/A	N/A	70-130					
Aroclor-1232	0.003	BQL	N/A	N/A	70-130					
Aroclor-1242	0.003	BQL	N/A	N/A	70-130					
Aroclor-1248	0.003	BQL	N/A	N/A	70-130					
Aroclor-1254	0.003	BQL	N/A	N/A	70-130					
Aroclor-1260	0.003	BQL	N/A	94	70-130	101	95	6.12	30.0	65-135

^{*} QC outside of established control limits

Quality Control Summary Results for Project Identified as TAMP) (A Progress Environmental Project)

	Prep	ICV	Spike	Duplicate
Parameter	<u>Blank</u>	% Recovery	% Recovery	% RSD
Silver, Total	BDL	102	106	1
Arsenic, Total	BDL	98	103	2
Beryllium, Total	BDL	93	101	<1
Cadmium, Total	BDL	100	102	2
Chromium, Total	BDL	102	104	<1
Copper, Total	BDL	104	105	<1
Mercury, Total	BDL	100	93	2
Nickel, Total	BDL	103	101	2
Lead, Total	BDL	109	106	2
Antimony, Total	BDL	98	100	2
Selenium, Total	BDL	98	103	1
Thallium, Total	BDL	110	105	2
Zinc, Total	BDL	101	99	2

COMMENTS:

Corresponding Sample Numbers: 769362-69

% = Percent

ICV = Initial Calibration Verification

Chemical Analysis for Selected Parameters and Water Sample Identified as TAMP (A Progress Environmental Project, collected 03 October 2013)

(A Progress Environmental Pro	ject, collected 03 Octo	ber2013)				
L Volatile Organics	Quantitation	TW-1	TW-2	TW-3	MWC-1	
EPA Method 6200 B	Limit	(b)	(1)	4 15		
Parameter .	(dad)	<u>(ppb)</u>	<u>(daga)</u>	<u>(daga)</u>	(ppb)	
Acetone Acrolein	25 100	BQL BQL	BQL BQL	BQL BQL	BQL BQL	
Acrylonitrile	100	BQL	BQL	BQL	BQL	
Benzene Bromobenzene	0.5 0.5	1,490 BQL	BQL BQL	BQL BQL	BQL BQL	
Bromochloromethane	0.5	BQL	BQL	BQL BQL	BQL BQL	
Bromodichloromethane Bromoform	0.5	BQL	BQL	BQL	BQL	
Bromomethane	1.0 1.0	BQL BQL	BQL BQL	BQL BQL	BQL BQL	
2-Butanone	25	BQL	BQL	BQL	BQL	
Carbon Disulfide Carbon Tetrachloride	5.0 0.5	BQL BQL	BQL BQL	BQL BQL	BQL BQL	
Chlorobenzene	0.5	BQL	BQL	BQL	BQL	
Chloroethane 2-Chloroethyl vinyl ether	1.0 5.0	BQL BQL	BQL BQL	BQL BQL	BQL BQL	
Chloroform	0.5	BQL	BQL	BQL	BQL	
Chloromethane 2-Chlorotoluene	1.0 0.5	BQL BQL	BQL BQL	BQL BQL	BQL BQL	
4-Chlorotoluene	0.5	BQL	BQL	BQL	BQL BQL	
Cis-1,2-Dichloroethene Cis-1,3-Dichloropropene	0.5 0.5	BQL	BQL	BQL	BQL	
1,2-Dibromo-3-Chloropropane(DBCP)	5.0	BQL BQL	BQL BQL	BQL BQL	BQL BQL	
1,2-Dibromoethane (EDB)	0.5	BQL	BQL	BQL	BQL	
Dibromochloromethane Dibromomethane	0.5 0.5	BQL BQL	BQL BQL	BQL BQL	BQL BQL	
1,2-Dichlorobenzene	0.5	BQL	BQL	BQL	BQL	
1,3-Dichlorobenzene 1,4-Dichlorobenzene	0.5 0.5	BQL BQL	BQL BQL	BQL BQL	BQL BQL	
1,1-Dichloroethane	0.5	BQL	BQL	BQL	BQL	
1,2-Dichloroethane 1,1-Dichloroethene	0.5 0.5	7.92 BQL	BQL BQL	BQL BQL	BQL BQL	
Dichloroflouromethane	0.5	BQL	BQL	BQL	BQL	
1,2-Dichloropropane 1,3-Dichloropropane	0,5 0,5	BQL BQL	BQL	BQL	BQL	
2,2-Dichloropropane	0.5	BQL	BQL BQL	BQL BQL	BQL BQL	
1,1-Dichloropropene Ethyl Benzene	0.5 0.5	BQL	BQL	BQL	BQL	
2-Hexanone	5.0	0.2 J BQL	BQL BQL	BQL BQL	BQL BQL	
IPE	0.5	BQL	BQL	BQL	BQL	
I-Propylbenzene 4-Methyl-2-Pentanone	0.5 5.0	13.3 BQL	BQL BQL	BQL BQL	BQL BQL	
Methyl Iodide	1.0	BQL	BQL	BQL	BQL	
Methylene Chloride MTBE	5.0 0.5	BQL BQL	BQL BQL	BQL BQL	BQL BQL	
Naphthalene	0.5	25.4	BQL	BQL	BQL	
N-Butylbenzene N-Propylbenzene	0.5 0.5	0.41 J 2.20	BQL BQL	BQL BQL	BQL BQL	
p-Isopropyltoluene	0.5	BQL	BQL	BQL	BQL	
Sec-Butylbenzene Styrene	0,5 0.5	0.97 BQL	BQL BQL	BQL	BQL	
Tert-Butylbenzene	0.5	0.29 J	BQL	BQL BQL	BQL BQL	
1,1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane	0.5 0.5	BQL	BQL	BQL	BQL	
Tetrachloroethene	0.5	BQL BQL	BQL BQL	BQL BQL	BQL BQL	
Toluene	0.5	0.64	BQL	BQL	BQL	
Trans-1,2-Dichloroethene Trans-1,3-Dichloropropene	0.5 0.5	BQL BQL	BQL BQL	BQL BQL	BQL BQL	
Trans-1,4-Dichloro-2-butene	5.0	BQL	BQL	BQL	BQL	
1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene	0.5 0.5	BQL BQL	BQL BQL	BQL BQL	BQL BQL	
1,1,1-Trichloroethane	0.5	BQL	BQL	BQL	BQL	
1,1,2-Trichloroethane Trichloroethene	0.5 0.5	BQL BQL	BQL BQL	BQL BQL	BQL BQL	
Trichlorofluoromethane	0.5	BQL	BQL	BQL	BQL	
1,2,3-Trichloropropane 1,2,4-Trimethylbenzene	0,5 0,5	BQL BQL	BQL BQL	BQL BQL	BQL BQL	
1,3,5-Trimethylbenzene	0.5	BQL	BQL	BQL	BQL	
Vinyl Acetate Vinyl Chloride	1.0 0.5	BQL BQL	BQL BQL	BQL BQL	BQL BQL	
Total Xylenes	1.0	0.32 J	BQL	BQL	BQL	
Ethanol Tert-butyl Alcohol	100 50.0	BQL BQL	BQL BQL	BQL BQL	BQL BQL	
Ethyl Tertbutyl Ether	0.5	BQL	BQL	BQL	BQL	
Terty-butyl Formate Tert-amyl Alcohol	5.0 50.0	BQL BQL	BQL BQL	BQL BQL	BQL BQL	
Tert-Amyl Methyl Ether	0.5	BQL	BQL	BQL	BQL	
Dilution Factor		1	1	1	1	
Sample Number		769515	769516	769517	769518	
Sample Date		10/03/13	10/03/13	10/03/13	10/03/13	
Sample Time (hrs)		1140	1215	1035	1100	
Date Analyzed Time Analyzed		10/11/13 1414	10/11/13 1517	10/11/13	10/11/13	
Surrogate Recovery	Range	1414	1317	1548	1640	
DBFM	(70-130%)	104%	105%	105%	107%	
Toluene-d8	(70-130%)	96%	98%	94%	95%	
4-BFB	(70-130%)	99%	97%	102%	99%	

Chemical Analysis for Selected Parameters and Water Sample Identified as TAMP (A Progress Environmental Project, collected 03 October 2013)

(A)	Progress Environmental Project, collected 03 October 2013) Semi-Veletik Organization Times Time												
	Semi-Volatile Organics	Quantitation	TW-1	TW-2	TW-3	MWC-1							
	EPA Method 625 BNA	Limit				******							
	<u>Parameter</u>	(ppb)	(ppb)	<u>(ppb)</u>	<u>(ppb)</u>	<u>(ppb)</u>							
	4-Chloro-3-methylphenol	10.0	BQL	BQL	BQL	BQL							
	2-Chlorophenol	10.0	BQL	BQL	BQL	BQL							
	2,4-Dichlorophenol	10.0	BQL	BQL	BQL	BQL							
	2,4-Dimethylphenol	10.0	BQL	BQL	BQL	BQL							
	2,4-Dinitrophenol	50.0	BQL	BQL	BQL	BQL							
	2-Methyl-4,6-dinitrophenol 2-Nitrophenol	50.0	BQL	BQL	BQL	BQL							
	4-Nitrophenol	10.0 50.0	BQL BQL	BQL BQL	BQL	BQL							
	Pentachlorophenol	50.0	BQL	BQL BQL	BQL BQL	BQL BQL							
	Phenol	10.0	BQL	BQL	BQL	BQL BQL							
	2,4,6-Trichlorophenol	10.0	BQL	BQL	BQL	BQL							
	Acenaphthene	10.0	BQL	BQL	BQL	BQL							
	Acenaphthylene	10.0	BQL	BQL	BQL	BQL							
	Anthracene	10.0	BQL	BQL	BQL	BQL							
	Benzidine Benzo(a)anthracene	50.0 10.0	BQL	BQL	BQL	BQL							
	Benzo(a)pyrene	10.0	BQL BQL	BQL BQL	BQL BQL	BQL							
	Benzo(b)fluoranthene	10.0	BQL	BQL	BQL	BQL BQL							
	Benzo(ghi)perylene	10.0	BQL	BQL	BQL	BQL							
	Benzo(k)fluoranthene	10.0	BQL	BQL	BQL	BQL							
	Benzyl butyl phthalate	10.0	BQL	BQL	BQL	BQL							
	Bis(2-chloroethoxy)methane	10.0	BQL	BQL	BQL	BQL							
	Bis(2-chloroethyl)ether	10.0	BQL	BQL	BQL	BQL							
	Bis(2-chloroisopropyl)ether	10.0	BQL	BQL	BQL	BQL							
	Bis(2-ethyl-hexyl)phthalate 4-Bromophenyl phenyl ether	10.0 10.0	BQL	BQL	BQL	BQL							
	2-Chloronaphthalene	10.0	BQL BQL	BQL BQL	BQL BQL	BQL							
	4-Chlorophenyl phenyl ether	10.0	BQL	BQL	BQL BQL	BQL BQL							
	Chrysene	10.0	BQL	BQL	BQL	BQL							
	Dibenzo(a,h)anthracene	10.0	BQL	BQL	BQL	BQL							
	1,2-Dichlorobenzene	10.0	BQL	BQL	BQL	BQL							
	1,3-Dichlorobenzene	10.0	BQL	BQL	BQL	BQL							
	1,4-Dichlorobenzene	10.0	BQL	BQL	BQL	BQL							
	3,3-Dichlorobenzidine	20.0	BQL	BQL	BQL	BQL							
	Diethyl phthalate Dimethyl phthalate	10.0 10.0	BQL	BQL	BQL	BQL							
	Di-N-Butyl phthalate	10.0	BQL BQL	BQL BQL	BQL	BQL							
	2,4-Dinitrotoluene	10.0	BQL BQL	BQL BQL	BQL BQL	BQL							
	2,6-Dinitrotoluene	10.0	BQL	BQL	BQL BQL	BQL BQL							
	Di-N-Octyl phthalate	10.0	BQL	BQL	BQL	BQL							
	1,2-Diphenylhydrazine	50.0	BQL	BQL	BQL	BQL							
	Fluoranthene	10.0	BQL	BQL	BQL	BQL							
	Fluorene	10.0	BQL	BQL	BQL	BQL							
	Hexachlorobenzene	10.0	BQL	BQL	BQL	BQL							
	Hexachloropudonentadiene	10.0	BQL	BQL	BQL	BQL							
	Hexachlorocyclopentadiene Hexachloroethane	10.0 10.0	BQL BQL	BQL	BQL	BQL							
	Indeno(1,2,3-cd) pyrene	10.0	BQL BQL	BQL BQL	BQL BQL	BQL							
	Isophorone	10.0	BQL	BQL	BQL	BQL BQL							
	Naphthalene	10.0	101	BQL	BQL	BQL							
	Nitrobenzene	10.0	BQL	BQL	BQL	BQL							
	N-Nitrosodimethylamine	10.0	BQL	BQL	BQL	BQL							
	N-nitrosodi-n-propylamine	10.0	BQL	BQL	BQL	BQL							
	N-Nitrosodiphenylamine Phenanthrene	10.0	BQL	BQL	BQL	BQL							
	Pyrene	10.0 10.0	BQL BQL	BQL BQL	BQL	BQL							
	1,2,4-Trichlorobenzene	10.0	BQL	BQL BQL	BQL BQL	BQL BQL							
	2-Methylnaphthalene	10.0	11.2 J	BQL	BQL	BQL BQL							
	1-Methylnapthalene	10.0	8.35 J	BQL	BQL	BQL							
	Dilution Factor		5	1	1	1							
	Sample Number		769515	769516	769517	769518							
	Sample Date		10/03/13	10/03/13	10/03/13	10/03/13							
	Sample Time (hrs)		1140	1215	10/03/13	10/03/13							
	Date Extracted		10/07/13	10/07/13	10/07/13								
	Date Analyzed		10/09/13	10/09/13	10/07/13	10/07/13							
	Time Analyzed		1629	10/09/13		10/09/13							
	Surrogate Recovery	Range	1029	1/15	1801	1847							
	2-Fluorophenol	(5-77%)	44%	49%	48%	46%							
	Phenol-D6	(7-64%)	24%	33%	33%	28%							
	Nitrobenzene-D5	(29-149%)	62%	78%	77%	68%							
	2,4,6-Tribromophenol	(12-123%)	73%	83%	75%	72%							
	2-Fluorobiphenyl	(10-133%)	76%	75%	72%	72%							
	4-Terphenyl-D14	(20-133%)	76%	76%	74%	73%							
	encourse # COST # 10/50/50/50	100 OTT 100	- 0.5°5°5°	, - / -	, , , , ,	7570							

Chemical Analysis for Selected Parameters and Sampling Locations Identified as TAMP (A Progress Environmental Project, collected 03 October 2013)

III. Priority Pollutant	TW-1	TW-2	TW-3	MWC-1
Metals				
<u>Parameter</u>	<u>(ppb)</u>	(ppb)	<u>(ppb)</u>	<u>(ppb)</u>
Silver, Total	<5.0	<5.0	<5.0	<5.0
Arsenic, Total	<5.0	7.06	<5.0	<5.0
Beryllium, total	<1.0	1.07	<1.0	<1.0
Cadmium, Total	<1.0	<1.0	<1.0	12.3
Chromium, Total	83.0	83.9	63.9	25.4
Copper, Total	118	81.4	57.9	24.3
Mercury, Total	<0.2	<0.2	<0.2	<0.2
Nickel, Total	38.7	36.4	33.9	6.20
Lead, Total	<5.0	<5.0	<5.0	32.2
Antimony, Total	<3.0	<3.0	<3.0	<3.0
Selenium, Total	<5.0	<5.0	<5.0	<5.0
Thallium, Total	<5.0	<5.0	<5.0	<5.0
Zinc, Total	193	91.6	119	214
Sample Number:	769515	769516	769517	769518
Sample Collected Date:	10/03/13	10/03/13	10/03/13	10/03/13
Sample Collected Time (Hrs):	1140	1215	1035	1100

Chemical Analysis for PCB's by EPA Method 8082 A Progress Environmental Project Identified as TAMP October 3, 2013

Sample Location	Sample <u>Number</u>	Sampling <u>Date</u>	Sampling <u>Time</u>	PCB 1016 (mg/L)	PCB 1221 (mg/L)	PCB 1232 (mg/L)	PCB 1242 (mg/L)	PCB 1248 (mg/L)	PCB 1254 (mg/L)	PCB 1260 (mg/L)
TW-1	769515	10/03/13	1140	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
TW-2	769516	10/03/13	1215	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
TW-3	769517	10/03/13	1035	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
MCW-1	769518	10/03/13	1100	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001

RESEARCH & ANALYTICAL LABORATORIES, INC. Analytical / Process Consultations Phone (336) 996-2841

CHAIN OF CUSTODY RECORD

	110110	.0007	00	0 =		'										W	ATER	/ WA	STE	WAT	ER	MISC.
COMPANY Prog	1285 to	Fine						JOB N					,		//	7	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	/s ³ /	/0	7/		
STREET ADDRESS CITY, STATE, ZIP CONTACT	2 % 6	588	4					PROJE	TAMP		/8/		18	/5/	//	1	986	3/2			/	
CITY, STATE, ZIP	Ro or or							SAMP	LER NAME (PLEASE PRINT)	RS		/.	0. 4	5//	(5)	5/4	1/2	20/	5/	E	/	
CONTACT	000			HONE				CAMP	LER NAME (PLEASE PRINT) Sa Sou Rockey LER SIGNATURE	- AIN		12	18/	7/0	1/2	3/0	0./%	0/3		/	/	/ / /
Jasav	~			722 °	9 9	98		SAMP	LER SIGNATURE	NO. OF CONTAINERS	/	2 2	8/6		8/2 2				0/			
SAMPLE NUMBER (LAB USE ONLY)	DATE	TIME	COMP	GRAB TE	MP C	RES CI	CHLORINE REMOVED (Y or N)	SAMPLE MATRIX (S or W)	SAMPLE LOCATION / I.D.	NO. 0	12/	10/2		2/2/	/6/ ~/~	0./2	\z/\s.				/	REQUESTED ANALYSIS
769515	10/3/13	1140		X				6	7W-1	9												\$6200B; 625 BVA,
Sig		RIS							TW-2 TW-3	1												OCB, PP motols
SIT		1235							TW13													1
518		11 00						17	mwg-1	V												
519	1			V				-	719	Ļ				_				_				(g)
	V			\perp	4	_								\perp	_			_				
	5				4												_	_				
					_	_						_					_	1				
					4					-		_		\perp	_			_				
			\vdash		4	_				-	1	+		_	-		\perp	_				
			H		+			-		-	1	+	\perp	_	-		_	_				
				-	+	\dashv				-		+		+	+		-	+	Н	-		
			\vdash	+	+					+	\vdash	+	\vdash	+	+		+	+	Н			
					\dagger					+-	\vdash	+	\Box	+	\dagger		+	\dagger				
					1									T	T							
																		T				
																		T				
RELINOUISHED BY		DATE/T		RECE					REMARKS:													
1/1		193/3 9	45	M	110	VAO	VIC	24				į s										
RELINQUISHED BY		/DATE/T	IME	RECE	IVED	BY					2	بالم	_									
								V	SAMPLE TEMPERATURE AT R	ECEII	от /	9 .	100									
									JOANNELE TEINFERMIORE AT R	LOCI												

CASE NARRATIVE

Four (4) water samples were received in good condition on 03 October 2013. The samples were analyzed without difficulties unless noted below.

Sidney L. Champion Director of Laboratory Services

lidy 1. Chy

Date

QA/QC Summary METHOD: 8260/6200B (25 ML PURGE) (5/10/20/50/500/1000 PPB QC) FILE NAME: WLC1011 CLIENT: PROGRESS ENVIROMENTAL(PROJECT: TAMP)														
METHOD: 8260/6200B (25 ML PU	JRGE) (5	/10/20/50/50	00/1000 PPB	QC)	FILE	NAMI	E: WL	C1011					
Sample ID:		769515-5					P.	AGE 1	OF 2					
Extraction Method	5035													
Date Extracted	N/A						7							
Volume Used	25 ML			· · ·										
Final Volume	25 ML													
Date Analyzed	10/11/13													
% Surrogate Recovery	102	94	105											
Acceptance Range	(70-130)	(70-130)	(70-130)											
				LCS				QC	LIMITS					
	MDL	Method	LCS %	Acceptance	MS	MSD	nnn	nnn	PERCENT					
Compound	mg/L	Blank	Recovery	Range	% Rec. *	% Rec. *	RPD	RPD	RECOVERY					
Dichlorodifluoromethane	0.12	ND	96	70 - 130				-						
Chloromethane	0.07	ND	98	70 - 130										
Vinyl Chloride	0.11	ND	97	70 - 130										
Bromomethane	0.18	ND	94	70 - 130										
Chloroethane	0.11	ND	94	70 - 130										
Trichlorofluoromethane	0.09	ND	108	70 - 130										
Acetone	1.18	ND	100	70 - 130										
Acrylonitrile	12.38	ND	107	70 - 130										
2-Butanone	0.88	ND	105	70 - 130										
1,1-Dichloroethene	0.09	ND	102	70 - 130	83	84	1	14	70 -130					
Methyl Iodide	0.19	ND	88	70 - 130										
Carbon Disulfide	0.45	ND	104	70 - 130										
Methylene Chloride	0.57	ND	99	70 - 130										
Trans-1,2-Dichloroethene	0.10	ND	101	70 - 130										
1,1-Dichloroethane	0.17	ND	103	70 - 130			-							
Isopropyl ether (IPE)	0.12	ND	107	70 - 130										
Methyl-Tert-Butyl ether (MTBE)	0.16	ND	99	70 - 130										
Vinyl Acetate	0.24	ND	105	70 - 130										
Cis-1,2-Dichloroethene	0.09	ND	104	70 - 130										
2,2-Dichloropropane	0.09	ND	109	70 - 130										
Bromochloromethane	0.12	ND	99	70 - 130										
Chloroform	0.05	ND	109	70 - 130										
1,1,1-Trichloroethane	0.12	ND	110	70 - 130										
Carbon Tetrachloride	0.10	ND	109	70 - 130										
1,1-Dichloropropene	0.12	ND	106	70 - 130										
Benzene	0.05	ND	100	70 - 130	95	96	1	11	70 -130					
Ethyl Acetate	0.35	ND	105	70 - 130										
1,2-Dichloroethane	0.09	ND	111	70 - 130										
Trichloroethene	0.12	ND	100	70 - 130	93	91	2	14	70 -130					
1,2-Dichloropropane	0.10	ND	101	70 - 130										
Dibromomethane	0.25	ND	108	70 - 130										
COMMENTS:														

METHOD: 8260/6200B (25 ML PURGE) (5/10/20/50/500/1000 PPB QC)
CLIENT: PROGRESS ENVIROMENTAL(PROJECT: TAMP) FILE NAME: WLC1011

Sample ID:		769515-518	3	LCS	PA	GE 2 OF 2		QC	LIMITS
	MDL	Method	LCS %	Acceptance	MS	MSD	DDD	nnn	PERCENT
Compound	mg/L	Blank	Recovery	Range	% Rec. *	% Rec. *	RPD	RPD	RECOVERY
Bromodichloromethane	0.07	ND	103	70 - 130					
4-Methyl-2-Pentanone	1.01	ND	101	70 - 130					
Cis-1,3-Dichloropropene	0.10	ND	101	70 - 130	-				
Toluene	0.26	ND	86	70 - 130	106	103	2	13	70 -130
Trans-1,3-Dichloropropene	0.12	ND	102	70 - 130					
1,1,2-Trichloroethane	0.20	ND	97	70 - 130					
Tetrachloroethene	0.17	ND	121	70 - 130					
2-Hexanone	1.42	ND	102	70 - 130					
Dibromochloromethane	0.07	ND	103	70 - 130					
1,3-Dichloropropane	0.13	ND	98	70 - 130					
1,2-Dibromoethane (EDB)	0.15	ND	97	70 - 130					
Chlorobenzene	0.10	ND	104	70 - 130	98	96	1	13	70 -130
1,1,1,2-Tetrachloroethane	0.10	ND	108	70 - 130					
Ethyl Benzene	0.07	ND	111	70 - 130					
Total Xylenes	0.29	ND	108	70 - 130					
Styrene	0.04	ND	106	70 - 130					
Bromoform	0.29	ND	113	70 - 130					
Isopropylbenzene	0.08	ND	113	70 - 130					
Bromobenzene	0.07	ND	109	70 - 130	-				
1,2,3-Trichloropropane	0.11	ND	112	70 - 130					
Trans-1,4-Dichloro-2-butene	0.52	ND	126	70 - 130					
N-Propylbenzene	0.08	ND	113	70 - 130					
2-Chlorotoluene	0.10	ND	116	70 - 130					
4-Chlorotoluene	0.09	ND	112	70 - 130					
1,3,5-Trimethylbenzene	0.07	ND	114	70 - 130					
Tert-Butylbenzene	0.08	ND	111	70 - 130					
1,2,4-Trimethylbenzene	0.07	ND	111	70 - 130					
Sec-Butylbenzene	0.12	ND	111	70 - 130					
1,3-Dichlorobenzene	0.12	ND	106	70 - 130					
1,1,2,2-Tetrachloroethane	0.08	ND	113	70 - 130					
p-Isopropyltoluene	0.09	ND	110	70 - 130					
1,4-Dichlorobenzene	0.08	ND	101	70 - 130					
1,2-Dichlorobenzene	0.09	ND	103	70 - 130					
N-Butylbenzene	0.10	ND	108	70 - 130					
1,2-Dibromo-3-Chloropropane(DBCP)	0.49	ND	93	70 - 130					
1,2,4-Trichlorobenzene	0.17	ND	104	70 - 130					
Naphthalene	0.18	ND	105	70 - 130					
1,2,3-Trichlorobenzene	0.18	ND	102	70 - 130					
COMMENTS:									

Method: 625 (100/200 PF	PB OC)		FILE NA	ME: WI	C1009-	MS3	Pa	ige 1 o	f 2
CLIENT: PROGRESS E		NMENT	AL (PRO	JECT II): TAM	P)	<u> </u>		
SAMPLE ID:	T	5-518				UMEN'	Т:MS-3		
Extraction Method	3510					 	1		
Date Extracted	10/07/13								
Weight Extracted	1L		:						
Final Extract Volume	1ML								
Date Analyzed	10/09/13								
% Surrogate Recovery	55	39	72	85		<u>'3</u>	90		
Acceptance Range	(5 - 77)	(7 - 64)		(12 - 123)		133)	(20 - 133)	_	
Acceptance Kange			(2) - 14)	<u> </u>		· ·	(20 - 133)	-	
				LCS Accept.	MS	MSD	RPD	001	
Compound	MDL UG/L	Method Blank	LCS % Recovery	Range	% Rec.	% Rec.		QC I	LIMITS % REC
N-Nitrosodimethylamine	0.970	ND	55	8-104				INFD	70 KEC
Bis(2-chloroethyl)ether	0.430	ND	80	45-111		-			
Phenol	0.460	ND	46	D-76	34	34	0	42	12-110
2-Chlorophenol	0.300	ND	78	30-107	77	77	0	40	27-123
1.3-Dichlorobenzene	0.250	ND	62	48-90				••	
1,4-Dichlorobenzene	0.200	ND	65	50-90	67	66	1	28	36-97
1,2-Dichlorobenzene	0.100	ND	65	50-93			ļ		
Bis(2-chloroisopropyl)ether	0.380	ND	85	50-107					
N-nitrosodi-n-propylamine	0.500	ND	82	47-111	79	77	3	38	41-116
Hexachloroethane	0.220	ND	58	36-90					
2-Nitrophenol	0.670	ND	86	33-110					
2,4-Dimethylphenol	1.550	ND	70	43-100					
Nitrobenzene	0.500	ND	71	46-112					
Isophorone	0.510	ND	72	50-104					
Bis(2-chloroethoxy)methane	0.420	ND	72	49-105					
2,4-Dichlorophenol	0.540	ND	74	33-108					_
1,2,4-Trichlorobenzene	0.560	ND	62	47-95	82	82	0	28	39-98
4-Chloro-3-methylphenol	1.830	ND	72	44-107	89	90	1	42	23-97
Naphthalene	0.710	ND	64	50-96		<u></u>			<u> </u>
Hexachlorobutadiene	0.770	ND	61	24-100					<u> </u>
2,4,6-Trichlorophenol	0.540	ND	77	22-124					
2-Methyl-4,6-Dinitrophenol	3.250	ND	84	16-115			ļ <u> </u>		
4-Nitrophenol	6.670	ND	40	1-69	22	24	6	50	10-80
Hexachlorocyclopentadiene	0.970	ND	77	16-85	1	1	1		ŀ

Method: 625 (100/200 PPB QC) FILE NAME: WLC1009-MS3 Page 2 of 2

CLIENT: PROGRESS ENVIRONMENTAL (PROJECT ID: TAMP)

				LCS				4	
Compound	MDL	Method	LCS %	Acceptr	MS	MSD	RPD		
Compound	UG/L	Blank	Recovery	ange	% Rec.	% Rec.	ICI D	QCL	IMITS
2-Chloronaphthalene	0.420	ND	76	51-100				RPD	%REC
Dimethyl phthalate	0.400	ND	76	47-107					
Acenaphthylene	0.150	ND	72	49-100					
2,6-Dinitrotoluene	0.670	ND	80	49-106					
Acenaphthene	0.280	ND	76	48-102	64	66	3	31	46-118
2,4-Dinitrotoluene	0.670	ND	83	50-106	65	68	4	38	24-96
Diethyl phthalate	0.820	ND	72	49-107					
4-Chlorophenyl phenyl ether	0.730	ND	78	43-112					
2,4-Dinitrophenol	4.190	ND	89	D-118					
Pentachlorophenol	5.220	ND	97	15-123	74	68	8	50	9-103
N-Nitrosodiphenylamine	1.150	ND	78	35-121					
4-Bromophenyl phenyl ether	0.670	ND	80	48-107					
Hexachlorobenzene	0.390	ND	79	50-102					
Phenanthrene	0.280	ND	78	42-105					
Anthracene	0.200	ND	75	44-104					
Di-N-Butyl phthalate	0.650	ND	74	44-111					
Benzidine	3.370	ND	15	D-48			-		l
Pyrene	1.920	ND	80	39-107	70	69	1	31	26-127
Benzyl butyl phthalate	1.220	ND	80	39-116					
Benzo(a)anthracene	0.380	ND	81	36-114					
3,3-Dichlorobenzidine	5.050	ND	34	6-52					
Chrysene	0.700	ND	81	45-99					
Bis(2-ethyl-hexyl)phthalate	1.140	ND	78	30-134					
Di-N-Octyl phthalate	0.740	ND	84	37-131					
Benzo(b)fluoranthene	0.770	ND	102	49-107					
Benzo(k)fluoranthene	0.600	ND	62	37-112					
Benzo(a)pyrene	0.430	ND	85	49-105					
Indeno(1,2,3-cd) pyrene	1.210	ND	85	38-122					
Dibenzo(a,h)anthracene	1.680	ND	82	43-118					
Benzo(g,h,i)perylene	1.780	ND	81	42-119					

N/A = Data Not Available

* = FAILED

Page 1 of 1

Sample ID	769515-518					
Date Analyzed	10/9/2013					
% Surrogate Recovery	97	100				
Acceptance Limits	(70-130)	(70-130)				

					LCS					
Compound	MDL ug/L	Method Blank	Trip/Field Blank	LCS % Recovery	Acceptance Range	MS	MSD	RPD	QC RPD	Limits MS & MSD
Aroclor-1016	0.003	BQL	N/A	94	70-130	101	95	6.12	30.0	65-135
Aroclor-1221	0.003	BQL	N/A	N/A	70-130					
Aroclor-1232	0.003	BQL	N/A	N/A	70-130					
Aroclor-1242	0.003	BQL	N/A	N/A	70-130					
Aroclor-1248	0.003	BQL	N/A	N/A	70-130					
Aroclor-1254	0.003	BQL	N/A	N/A	70-130	,				
Aroclor-1260	0.003	BQL	N/A	94	70-130	101	95	6.12	30.0	65-135

^{*} QC outside of established control limits

Quality Control Summary Results for Project Identified as THMP (A Progress Environmental, Inc. Project)

	Prep	ICV	Spike	Spike Duplicate
<u>Parameter</u>	Blank	% Recovery	% Recovery	% Difference
Silver, Total	BDL	95	92	2
Arsenic, Total	BDL	95	92	<1
Beryllium, Total	BDL	94	93	<1
Cadmium, Total	BDL	96	90	<1
Chromium, Total	BDL	99	92	2
Copper, Total	BDL	101	93	2
Mercury, Total	BDL	100	96	2
Nickel, Total	BDL	102	91	<1
Lead, Total	BDL	107	93	<1
Antimony, Total	BDL	107	101	3
Selenium, Total	BDL	95	90	<1
Thallium, Total	BDL	107	91	<1
Zinc, Total	BDL	98	85	1

Corresponding Sample Numbers: 769515-518

% = Percent

ICV = Initial Calibration Verification

LCS = Laboratory Control Sample

November 4, 2013

Progress Environmental P.O. Box 5884 Winston-Salem, NC 27113-5884 Attention: Jeff Ballsieper

Chemical Analysis for Total Petroleum Hydrocarbons (TPH) Sampling Identified as Former Tamp Facility (A Progress Environmental Project, collected 30 October 2013)

Sample Identification	RAL Sample#	Date <u>Taken</u>	Time (hrs)	Quantitation Limit (mg/kg)	EPA Method 5035 (mg/kg)	Date <u>Analyzed</u>	Time <u>Analyzed</u>	Surrogate Recovery (Flurobenzene)
TW-8 5'	771620	10/30/13	1205	10	24.5	11/01/13	2000	95%

November 4, 2013

Progress Environmental P.O. Box 5884 Winston-Salem, NC 27113-5884 Attention: Jeff Ballsieper

Chemical Analysis for Total Petroleum Hydrocarbons (TPH) Sampling Identified as Former Tamp Facility (A Progress Environmental Project, collected 30 October 2013)

Sample <u>Identification</u>	RAL <u>Sample#</u>	Date <u>Taken</u>	Time (hrs)	Quantitation Limit (mg/kg)	EPA Method 3550 (mg/kg)	Date <u>Extracted</u>	Date <u>Analyzed</u>	Time <u>Analyzed</u>	Surrogate Recovery (P-Terphenyl d-14)
TW-8 5'	771620	10/30/13	1205	10	17.6	11/01/13	11/01/13	1823	73%

Chemical Analysis for Selected Parameters and Water Sample Identified as Former Tamp Facility (A Progress Environmental Project, collected 31 October 2013)

A Progress Environmental Pro							
I. Volatile Organics EPA Method 6200 B	Quantitation Limit	TW-4	TW-5	TW-6	TW-7	TW-8	TW-9
<u>Parameter</u>	(ppb)	(ppb)	(ppb)	(ppb)	(dqq)	<u>(ppb)</u>	(ppb)
Acetone	25	BQL	BQL	BQL	BQL	BQL	BQL
Acrolein	100	BQL	BQL	BQL	BQL	BQL	BQL
Acrylonitrile Benzene	100 0.5	BQL BQL	BQL BQL	BQL BQL	BQL BQL	BQL 406	BQL 2.05
Bromobenzene	0.5	BQL	BQL	BQL	BQL	BQL	BQL
Bromochloromethane	0.5	BQL	BQL	BQL	BQL	BQL	BQL
Bromodichloromethane Bromoform	0.5 1.0	BQL BQL	BQL BQL	BQL BQL	BQL BQL	BQL BQL	BQL
Bromomethane	1.0	BQL	BQL	BQL	BQL	BQL	BQL BOL
2-Butanone	25	BQL	BQL	BQL	BQL	BQL	BQL
Carbon Disulfide Carbon Tetrachloride	5.0 0.5	BQL BQL	BQL BQL	BQL BQL	BQL BQL	BQL	BQL
Chlorobenzene	0.5	BQL	BQL	BQL	BQL	BQL BQL	BQL BQL
Chloroethane	1.0	BQL	BQL	BQL	BQL	BQL	BQL
2-Chloroethyl vinyl ether Chloroform	5.0 0.5	BQL BQL	BQL BQL	BQL BQL	BQL BQL	BQL	BQL
Chloromethane	1.0	BQL	BQL	BQL	BQL BQL	BQL BQL	BQL BQL
2-Chlorotoluene	0.5	BQL	BQL	BQL	BQL	BQL	BQL
4-Chlorotoluene Cis-1,2-Dichloroethene	0.5 0.5	BQL BQL	BQL BQL	BQL BQL	BQL	BQL	BQL
Cis-1,3-Dichloropropene	0.5	BQL	BQL	BQL	BQL BQL	BQL BQL	BQL BQL
1,2-Dibromo-3-Chloropropane(DBCP)	5.0	BQL	BQL	BQL	BQL	BQL	BQL
1,2-Dibromoethane (EDB)	0.5	BQL	BQL	BQL	BQL	BQL	BQL
Dibromochloromethane Dibromomethane	0.5 0.5	BQL BQL	BQL BQL	BQL BQL	BQL BQL	BQL BQL	BQL BQL
1,2-Dichlorobenzene	0.5	BQL	BQL	BQL	BQL	BQL	BQL
1,3-Dichlorobenzene	0.5	BQL	BQL	BQL	BQL	BQL	BQL
1,4-Dichlorobenzene 1,1-Dichloroethane	0.5 0.5	BQL BQL	BQL BQL	BQL BQL	BQL BQL	BQL BQL	BQL
1,2-Dichloroethane	0.5	BQL	BQL	BQL	BQL	BQL	BQL BQL
1,1-Dichloroethene	0.5	BQL	BQL	BQL	BQL	BQL	BQL
Dichloroflouromethane 1,2-Dichloropropane	0.5 0.5	BQL BQL	BQL BQL	BQL BQL	BQL	BQL	BQL
1,3-Dichloropropane	0.5	BQL	BQL	BQL	BQL BQL	BQL BQL	BQL BQL
2,2-Dichloropropane	0.5	BQL	BQL	BQL	BQL	BQL	BQL
1,1-Dichloropropene	0.5 0.5	BQL	BQL	BQL	BQL	BQL	BQL
Ethyl Benzene 2-Hexanone	5.0	BQL BQL	BQL BQL	BQL BQL	BQL BQL	153 BQL	BQL BQL
IPE	0.5	BQL	BQL	BQL	BQL	BQL	BQL
I-Propyibenzene	0.5	BQL	BQL	BQL	BQL	124	0.24 J
4-Methyl-2-Pentanone Methyl lodide	5.0 1.0	BQL BQL	BQL BQL	BQL BQL	BQL BQL	BQL BQL	BQL BQL
Methylene Chloride	5.0	BQL	BQL	BQL	BQL	BQL	BQL
мтве	0.5	BQL	BQL	BQL	BQL	BQL	BQL
Naphthalene N-Butylbenzene	0.5 0.5	BQL BQL	BQL BQL	BQL BQL	BQL BQL	58.5 6.80	BQL BQL
N-Propylbenzene	0.5	BQL	BQL	BQL	BQL	59.1	BQL
p-lsopropyltoluene	0.5	BQL	BQL	BQL	BQL	12.8	BQL
Sec-Butylbenzene Styrene	0.5 0.5	BQL BQL	BQL BQL	BQL BQL	BQL BQL	11.6	BQL
Tert-Butylbenzene	0.5	BQL	BQL	BQL	BQL	BQL BQL	BQL BQL
1,1,1,2-Tetrachloroethane	0.5	BQL	BQL	BQL	BQL	BQL	BQL
1,1,2,2-Tetrachloroethane	0.5	BQL	BQL	BQL	BQL	BQL	BQL
Tetrachloroethene Toluene	0.5 0.5	BQL BQL	BQL BQL	BQL BQL	BQL BQL	BQL 9,30	BQL BOL
Trans-1,2-Dichloroethene	0.5	BQL	BQL	BQL	BQL	BQL	BQL
Trans-1,3-Dichloropropene	0.5	BQL	BQL	BQL	BQL	BQL	BQL
Trans-1,4-Dichloro-2-butene 1,2,3-Trichlorobenzene	5.0 0.5	BQL BQL	BQL BQL	BQL BQL	BQL BQL	BQL BQL	BQL BQL
1,2,4-Trichlorobenzene	0.5	BQL	BQL	BQL	BQL	BQL	BQL
1,1,1-Trichloroethane	0.5	BQL	BQL	BQL	BQL	BQL	BQL
1,1,2-Trichloroethane Trichloroethene	0.5 0.5	BQL BQL	BQL BQL	BQL BQL	BQL BQL	BQL BQL	BQL BQL
Trichlorofluoromethane	0.5	BQL	BQL	BQL	BQL	BQL	BQL BQL
1,2,3-Trichloropropane	0.5	BQL	BQL	BQL	BQL	BQL	BQL
1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene	0.5 0.5	BQL BQL	BQL BQL	BQL BQL	BQL BQL	89.2 40.7	0.13 J
Vinyl Acetate	1.0	BQL	BQL	BQL	BQL	BQL	BQL BQL
Vinyl Chloride	0.5	BQL	BQL	BQL	BQL	BQL	BQL
Total Xylenes Ethanol	1.0 100	BQL BQL	BQL BQL	BQL BQL	BQL BQL	198 BQL	0, 54 J BQL
Tert-butyl Alcohol	50.0	BQL	BQL	BQL	BQL	BQL	BQL
Ethyl Tertbutyl Ether	0.5	BQL	BQL	BQL	BQL	BQL	BQL
Terty-butyl Formate Tert-amyl Alcohol	5.0 50.0	BQL BQL	BQL BQL	BQL BQL	BQL BQL	BQL BQL	BQL BQL
Tert-Amyl Methyl Ether	0.5	BQL	BQL	BQL	BQL	BQL	BQL
Dilution Factor		1	1	1	1	10	1
Sample Number		771621	771622	771623	771624	771625	771626
Sample Date		10/31/13	10/31/13	10/31/13	10/31/13	10/31/13	10/31/13
Sample Time (hrs)		1205	1215	1155	1145	1130	1120
Date Analyzed		10/31/13	10/31/13	10/31/13	10/31/13	10/31/13	10/31/13
Time Analyzed		1924	1955	2027	2058	2130	1749
Surrogate Recovery	Range						
DBFM	(70-130%)	117%	118%	113%	115%	116%	112%
Toluene-d8	(70-130%)	85%	84%	86%	84%	89%	89%
4-BFB	(70-130%)	108%	111%	105%	108%	114%	108%

RESEARCH & ANALYTICAL LABORATORIES, INC. Analytical / Process Consultations Phone (336) 996-2841

CHAIN OF CUSTODY RECORD

COMPANY STREET ADDRESS PROJECT PROJECT											WATER	WAST	EWATE	ER	MISC.	
COMPANY	cs E	Aviro.	ewest.	4, l.	s i					77,		2//	\ \?\ \!	//		
STREET ADDRESS	in takes	Cap.	<i>i</i>			PROJE	CT TAMB TAME		/_/		18/0	01/2		//		
CITY STATE ZIP	ugelle	2116	27			SAMPI	ED NAME (DI EASE DDINT)	4	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	//01/	\$ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\		0/2/	/ // ,	///	
Winst	m-Sal	em Ni	1 27	101		Tu.	GE Ball GASEL	VERS	8/3/	12/5	1 8 /Q/	2/4				
CONTACT			PHONE			SAMPL	ER SIGNATURE	ITAII	\x\z\z\z\z\z\z\z\z\z\z\z\z\z\z\z\z\z\z\	0/5/5		14/0	3//	"//	/ /	
CITY, STATE, ZIP	Balls	Sieper	722	-990	49	CAUGE 1	CT MER TAMP FACILITY ER NAME (PLEASE PRINT) H BALLSI ESPEN ER SIGNATURE SAMPLE LOCATION / I.D.	NO. OF CONTAINERS	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		0/0/0			///	/	
SAMPLE NUMBER (LAB USE ONLY)	DATE	TIME CO	MP GRAB TEM	RES	REMOVED (Y or N)	1000	SAMPLE LOCATION / I.D.	NO.	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1/2/2/	12/2/0	5//		//	REQUESTED ANALYS	SIS
			3.50			2	TW-8 5'	4							035/3550	
(0.21	16/31	1205				W	To -4	4						6	, 200 B	
622	Wiri	1215	-			w	TW-5	4							, career	
623	10/31	1155	200			W	TW-6	4								
624	10/31	1145	-20			140	TW-7	4								
625	16-121	1130				W	TW-0	4					\top		,	
1026	10/31		20			h	TW-9	lej					\top		1	
	112					-00	<i>f</i> 00 <i>f</i>	/					\top		V	
											11	\Box	\top			
				T									\top			
								T					\top			
													\top			
													\top			
													\top			
											\top		\top			
			6													
													\top			
RELINQUISHED BY		DATE/TIME	RECEIVE	D BY		0	REMARKS:	-								
RELINQUISHED BY		10/31/26	5 Mi	iclic	le	26	SAMPLE TEMPERATURE AT RE	60	18276 F	na 17	w-8	-5				
RELINQUISHED BY		DATE/TIME	RECEIVE	D BY	200	7	7	,								
		Ī			0	/	SAMPLE TEMPERATURE AT RE	ECEI	PT 2.6 °C	07	7100	P				

CASE NARRATIVE

One (1) soil and six (6) water samples were received in good condition on 31 October 2013. The samples were analyzed without difficulties unless noted below.

Sidney L. Champion

lidy 1. Chy

Director of Laboratory Services

Date

QA/QC Summary METHOD: 8260/6200B (25 ML PURGE) (5/10/20/50/500/1000 PPB QC) **FILE NAME: WLC1031** CLIENT: PROGRESS ENVIROMENTAL (PROJECT: FORMER TAMP FACILITY) 771621-626 PAGE 1 OF 2 Sample ID: **Extraction Method** 5035 **Date Extracted** N/A Volume Used 25 ML Final Volume 25 ML Date Analyzed 10/31/13 % Surrogate Recovery 109 93 106 Acceptance Range (70-130)(70-130)(70-130)LCS **QC LIMITS** MS **MSD** Method LCS % Acceptance **MDL** PERCENT RPD **RPD** Compound % Rec. * % Rec. * Blank Recovery Range RECOVERY mg/L 70 - 1300.12 ND 92 Dichlorodifluoromethane 70 - 130 ND 99 Chloromethane 0.07 70 - 130 0.11 ND 99 Vinyl Chloride ND 70 - 130 97 0.18Bromomethane 70 - 130 ND 105 0.11 Chloroethane 70 - 130 Trichlorofluoromethane 0.09 ND 116 70 - 1301.18 ND 107 Acetone 70 - 130 ND 115 12.38 Acrylonitrile 70 - 130 ND 107 2-Butanone 0.88 5 14 0.09 ND 104 70 - 130 100 96 70 -130 1.1-Dichloroethene 70 - 130ND 90 0.19 Methyl Iodide 70 - 1300.45 ND 106 Carbon Disulfide 70 - 130 0.57 ND 114 Methylene Chloride ND 106 70 - 130 0.10 Trans-1.2-Dichloroethene 70 - 130 0.17 ND 112 1.1-Dichloroethane 70 - 130 ND 112 Isopropyl ether (IPE) 0.12 ND 115 70 - 130Methyl-Tert-Butyl ether (MTBE) 0.16 70 - 130120 Vinyl Acetate 0.24 ND 70 - 130104 Cis-1,2-Dichloroethene 0.09 ND 70 - 130 0.09 ND 115 2,2-Dichloropropane 70 - 130 ND 114 0.12 Bromochloromethane ND 117 70 - 1300.05 Chloroform 0.12 ND 118 70 - 1301,1,1-Trichloroethane ND 120 70 - 1300.10 Carbon Tetrachloride 116 70 - 130 0.12 ND 1,1-Dichloropropene 70 - 130 106 1 11 ND 108 105 70 -130 0.05 Benzene 70 - 1300.35 ND 106 Ethyl Acetate ND 125 70 - 130 1,2-Dichloroethane 0.09 70 - 130 105 106 1 14 70 -130 ND 108 0.12 Trichloroethene 70 - 130 ND 108 0.10 1,2-Dichloropropane 0.25 ND 119 70 - 130Dibromomethane COMMENTS:

METHOD: 8260/6200B (25 ML PURGE) (5/10/20/50/500/1000 PPB QC) FILE NAME: WLC1031

Sample ID:	j	LCS	PA	GE 2 OF 2		QC	LIMITS		
	MDL	Method	LCS %	Acceptance	MS	MSD	nnn	RPD	PERCENT
Compound	mg/L	Blank	Recovery	Range	% Rec. *	% Rec. *	RPD		RECOVERY
Bromodichloromethane	0.07	ND	108	70 - 130					
4-Methyl-2-Pentanone	1.01	ND	105	70 - 130					
Cis-1,3-Dichloropropene	0.10	ND	107	70 - 130					
Toluene	0.26	ND	91	70 - 130	87	85	3	13	70 -130
Trans-1,3-Dichloropropene	0.12	ND	112	70 - 130	-				
1,1,2-Trichloroethane	0.20	ND	98	70 - 130					
Tetrachloroethene	0.17	ND	102	70 - 130					
2-Hexanone	1.42	ND	106	70 - 130					
Dibromochloromethane	0.07	ND	107	70 - 130					
1,3-Dichloropropane	0.13	ND	102	70 - 130					
1,2-Dibromoethane (EDB)	0.15	ND	99	70 - 130					
Chlorobenzene	0.10	ND	111	70 - 130	109	108	1	13	70 -130
1,1,1,2-Tetrachloroethane	0.10	ND	118	70 - 130					
Ethyl Benzene	0.07	ND	114	70 - 130					
Total Xylenes	0.29	ND	112	70 - 130		-			
Styrene	0.04	ND	112	70 - 130					
Bromoform	0.29	ND	112	70 - 130					
Isopropylbenzene	0.08	ND	118	70 - 130					
Bromobenzene	0.07	ND	123	70 - 130					
1,2,3-Trichloropropane	0.11	ND	115	70 - 130					
Trans-1,4-Dichloro-2-butene	0.52	ND	128	70 - 130					
N-Propylbenzene	0.08	ND	121	70 - 130					
2-Chlorotoluene	0.10	ND	122	70 - 130					
4-Chlorotoluene	0.09	ND	121	70 - 130					
1,3,5-Trimethylbenzene	0.07	ND	122	70 - 130					
Tert-Butylbenzene	0.08	ND	120	70 - 130					
1,2,4-Trimethylbenzene	0.07	ND	121	70 - 130					
Sec-Butylbenzene	0.12	ND	119	70 - 130					
1,3-Dichlorobenzene	0.12	ND	114	70 - 130					
1,1,2,2-Tetrachloroethane	0.08	ND	107	70 - 130					
p-lsopropyltoluene	0.09	ND	113	70 - 130					
1,4-Dichlorobenzene	0.08	ND	107	70 - 130					
1,2-Dichlorobenzene	0.09	ND	111	70 - 130					
N-Butylbenzene	0.10	ND	117	70 - 130					
1,2-Dibromo-3-Chloropropane(DBCP)	0.49	ND	108	70 - 130					
1,2,4-Trichlorobenzene	0.17	ND	109	70 - 130					
Naphthalene	0.18	ND	106	70 - 130					
1,2,3-Trichlorobenzene	0.18	ND	111	70 - 130					
COMMENTS:	L	L	1	<u> </u>	<u></u>	·	I	1	1

COMMENTS:

Method <u>5035</u> Page 1 of 1

Project: Progress Environmental, Inc. - Former Tamp Facility

Sample ID	771620				
Sample Prep Method	5030				
Volume/Used	5 mls				
Final Extract Volume	N/A				
Date Analyzed	11/01/13				
% Surrogate Recovery	109				
Acceptance Limits	(70-130)				

					LCS				
Compound	MDL mg/kg	Method Blank	Trip/Field Blank	LCS % Recovery	Acceptance Range	Sample	Duplicate	%RPD	Control Limits
Gasoline	0.57	BQL	N/A	99	72-128	788	786	<1	20%

:

Method <u>3550</u> Page 1 of 1

Project: Progress Environmental, Inc. - Former Tamp Facility

Sample ID	771620					
Sample Prep Method	3550					
Volume/Used	15 g					
Final Extract Volume	10 mls					
Date Analyzed	11/01/13					
% Surrogate Recovery	91					
Acceptance Limits	(70-130)	-			-	

					LCS				
Compound	MDL mg/kg	Method Blank	Trip/Field Blank	LCS % Recovery	Acceptance Range	Sample	Duplicate	%RPD	Control Limits
Diesel	1.36	BQL	N/A	103	80-120	80.0	78.0	2.53	20